관리-도구
편집 파일: cluster_inc.h
/* NOLINT(build/header_guard) */ /* Copyright 2013 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* template parameters: FN, CODE */ #define HistogramType FN(Histogram) /* Computes the bit cost reduction by combining out[idx1] and out[idx2] and if it is below a threshold, stores the pair (idx1, idx2) in the *pairs queue. */ BROTLI_INTERNAL void FN(BrotliCompareAndPushToQueue)( const HistogramType* out, const uint32_t* cluster_size, uint32_t idx1, uint32_t idx2, size_t max_num_pairs, HistogramPair* pairs, size_t* num_pairs) CODE({ BROTLI_BOOL is_good_pair = BROTLI_FALSE; HistogramPair p; p.idx1 = p.idx2 = 0; p.cost_diff = p.cost_combo = 0; if (idx1 == idx2) { return; } if (idx2 < idx1) { uint32_t t = idx2; idx2 = idx1; idx1 = t; } p.idx1 = idx1; p.idx2 = idx2; p.cost_diff = 0.5 * ClusterCostDiff(cluster_size[idx1], cluster_size[idx2]); p.cost_diff -= out[idx1].bit_cost_; p.cost_diff -= out[idx2].bit_cost_; if (out[idx1].total_count_ == 0) { p.cost_combo = out[idx2].bit_cost_; is_good_pair = BROTLI_TRUE; } else if (out[idx2].total_count_ == 0) { p.cost_combo = out[idx1].bit_cost_; is_good_pair = BROTLI_TRUE; } else { double threshold = *num_pairs == 0 ? 1e99 : BROTLI_MAX(double, 0.0, pairs[0].cost_diff); HistogramType combo = out[idx1]; double cost_combo; FN(HistogramAddHistogram)(&combo, &out[idx2]); cost_combo = FN(BrotliPopulationCost)(&combo); if (cost_combo < threshold - p.cost_diff) { p.cost_combo = cost_combo; is_good_pair = BROTLI_TRUE; } } if (is_good_pair) { p.cost_diff += p.cost_combo; if (*num_pairs > 0 && HistogramPairIsLess(&pairs[0], &p)) { /* Replace the top of the queue if needed. */ if (*num_pairs < max_num_pairs) { pairs[*num_pairs] = pairs[0]; ++(*num_pairs); } pairs[0] = p; } else if (*num_pairs < max_num_pairs) { pairs[*num_pairs] = p; ++(*num_pairs); } } }) BROTLI_INTERNAL size_t FN(BrotliHistogramCombine)(HistogramType* out, uint32_t* cluster_size, uint32_t* symbols, uint32_t* clusters, HistogramPair* pairs, size_t num_clusters, size_t symbols_size, size_t max_clusters, size_t max_num_pairs) CODE({ double cost_diff_threshold = 0.0; size_t min_cluster_size = 1; size_t num_pairs = 0; { /* We maintain a vector of histogram pairs, with the property that the pair with the maximum bit cost reduction is the first. */ size_t idx1; for (idx1 = 0; idx1 < num_clusters; ++idx1) { size_t idx2; for (idx2 = idx1 + 1; idx2 < num_clusters; ++idx2) { FN(BrotliCompareAndPushToQueue)(out, cluster_size, clusters[idx1], clusters[idx2], max_num_pairs, &pairs[0], &num_pairs); } } } while (num_clusters > min_cluster_size) { uint32_t best_idx1; uint32_t best_idx2; size_t i; if (pairs[0].cost_diff >= cost_diff_threshold) { cost_diff_threshold = 1e99; min_cluster_size = max_clusters; continue; } /* Take the best pair from the top of heap. */ best_idx1 = pairs[0].idx1; best_idx2 = pairs[0].idx2; FN(HistogramAddHistogram)(&out[best_idx1], &out[best_idx2]); out[best_idx1].bit_cost_ = pairs[0].cost_combo; cluster_size[best_idx1] += cluster_size[best_idx2]; for (i = 0; i < symbols_size; ++i) { if (symbols[i] == best_idx2) { symbols[i] = best_idx1; } } for (i = 0; i < num_clusters; ++i) { if (clusters[i] == best_idx2) { memmove(&clusters[i], &clusters[i + 1], (num_clusters - i - 1) * sizeof(clusters[0])); break; } } --num_clusters; { /* Remove pairs intersecting the just combined best pair. */ size_t copy_to_idx = 0; for (i = 0; i < num_pairs; ++i) { HistogramPair* p = &pairs[i]; if (p->idx1 == best_idx1 || p->idx2 == best_idx1 || p->idx1 == best_idx2 || p->idx2 == best_idx2) { /* Remove invalid pair from the queue. */ continue; } if (HistogramPairIsLess(&pairs[0], p)) { /* Replace the top of the queue if needed. */ HistogramPair front = pairs[0]; pairs[0] = *p; pairs[copy_to_idx] = front; } else { pairs[copy_to_idx] = *p; } ++copy_to_idx; } num_pairs = copy_to_idx; } /* Push new pairs formed with the combined histogram to the heap. */ for (i = 0; i < num_clusters; ++i) { FN(BrotliCompareAndPushToQueue)(out, cluster_size, best_idx1, clusters[i], max_num_pairs, &pairs[0], &num_pairs); } } return num_clusters; }) /* What is the bit cost of moving histogram from cur_symbol to candidate. */ BROTLI_INTERNAL double FN(BrotliHistogramBitCostDistance)( const HistogramType* histogram, const HistogramType* candidate) CODE({ if (histogram->total_count_ == 0) { return 0.0; } else { HistogramType tmp = *histogram; FN(HistogramAddHistogram)(&tmp, candidate); return FN(BrotliPopulationCost)(&tmp) - candidate->bit_cost_; } }) /* Find the best 'out' histogram for each of the 'in' histograms. When called, clusters[0..num_clusters) contains the unique values from symbols[0..in_size), but this property is not preserved in this function. Note: we assume that out[]->bit_cost_ is already up-to-date. */ BROTLI_INTERNAL void FN(BrotliHistogramRemap)(const HistogramType* in, size_t in_size, const uint32_t* clusters, size_t num_clusters, HistogramType* out, uint32_t* symbols) CODE({ size_t i; for (i = 0; i < in_size; ++i) { uint32_t best_out = i == 0 ? symbols[0] : symbols[i - 1]; double best_bits = FN(BrotliHistogramBitCostDistance)(&in[i], &out[best_out]); size_t j; for (j = 0; j < num_clusters; ++j) { const double cur_bits = FN(BrotliHistogramBitCostDistance)(&in[i], &out[clusters[j]]); if (cur_bits < best_bits) { best_bits = cur_bits; best_out = clusters[j]; } } symbols[i] = best_out; } /* Recompute each out based on raw and symbols. */ for (i = 0; i < num_clusters; ++i) { FN(HistogramClear)(&out[clusters[i]]); } for (i = 0; i < in_size; ++i) { FN(HistogramAddHistogram)(&out[symbols[i]], &in[i]); } }) /* Reorders elements of the out[0..length) array and changes values in symbols[0..length) array in the following way: * when called, symbols[] contains indexes into out[], and has N unique values (possibly N < length) * on return, symbols'[i] = f(symbols[i]) and out'[symbols'[i]] = out[symbols[i]], for each 0 <= i < length, where f is a bijection between the range of symbols[] and [0..N), and the first occurrences of values in symbols'[i] come in consecutive increasing order. Returns N, the number of unique values in symbols[]. */ BROTLI_INTERNAL size_t FN(BrotliHistogramReindex)(MemoryManager* m, HistogramType* out, uint32_t* symbols, size_t length) CODE({ static const uint32_t kInvalidIndex = BROTLI_UINT32_MAX; uint32_t* new_index = BROTLI_ALLOC(m, uint32_t, length); uint32_t next_index; HistogramType* tmp; size_t i; if (BROTLI_IS_OOM(m)) return 0; for (i = 0; i < length; ++i) { new_index[i] = kInvalidIndex; } next_index = 0; for (i = 0; i < length; ++i) { if (new_index[symbols[i]] == kInvalidIndex) { new_index[symbols[i]] = next_index; ++next_index; } } /* TODO: by using idea of "cycle-sort" we can avoid allocation of tmp and reduce the number of copying by the factor of 2. */ tmp = BROTLI_ALLOC(m, HistogramType, next_index); if (BROTLI_IS_OOM(m)) return 0; next_index = 0; for (i = 0; i < length; ++i) { if (new_index[symbols[i]] == next_index) { tmp[next_index] = out[symbols[i]]; ++next_index; } symbols[i] = new_index[symbols[i]]; } BROTLI_FREE(m, new_index); for (i = 0; i < next_index; ++i) { out[i] = tmp[i]; } BROTLI_FREE(m, tmp); return next_index; }) BROTLI_INTERNAL void FN(BrotliClusterHistograms)( MemoryManager* m, const HistogramType* in, const size_t in_size, size_t max_histograms, HistogramType* out, size_t* out_size, uint32_t* histogram_symbols) CODE({ uint32_t* cluster_size = BROTLI_ALLOC(m, uint32_t, in_size); uint32_t* clusters = BROTLI_ALLOC(m, uint32_t, in_size); size_t num_clusters = 0; const size_t max_input_histograms = 64; size_t pairs_capacity = max_input_histograms * max_input_histograms / 2; /* For the first pass of clustering, we allow all pairs. */ HistogramPair* pairs = BROTLI_ALLOC(m, HistogramPair, pairs_capacity + 1); size_t i; if (BROTLI_IS_OOM(m)) return; for (i = 0; i < in_size; ++i) { cluster_size[i] = 1; } for (i = 0; i < in_size; ++i) { out[i] = in[i]; out[i].bit_cost_ = FN(BrotliPopulationCost)(&in[i]); histogram_symbols[i] = (uint32_t)i; } for (i = 0; i < in_size; i += max_input_histograms) { size_t num_to_combine = BROTLI_MIN(size_t, in_size - i, max_input_histograms); size_t num_new_clusters; size_t j; for (j = 0; j < num_to_combine; ++j) { clusters[num_clusters + j] = (uint32_t)(i + j); } num_new_clusters = FN(BrotliHistogramCombine)(out, cluster_size, &histogram_symbols[i], &clusters[num_clusters], pairs, num_to_combine, num_to_combine, max_histograms, pairs_capacity); num_clusters += num_new_clusters; } { /* For the second pass, we limit the total number of histogram pairs. After this limit is reached, we only keep searching for the best pair. */ size_t max_num_pairs = BROTLI_MIN(size_t, 64 * num_clusters, (num_clusters / 2) * num_clusters); BROTLI_ENSURE_CAPACITY( m, HistogramPair, pairs, pairs_capacity, max_num_pairs + 1); if (BROTLI_IS_OOM(m)) return; /* Collapse similar histograms. */ num_clusters = FN(BrotliHistogramCombine)(out, cluster_size, histogram_symbols, clusters, pairs, num_clusters, in_size, max_histograms, max_num_pairs); } BROTLI_FREE(m, pairs); BROTLI_FREE(m, cluster_size); /* Find the optimal map from original histograms to the final ones. */ FN(BrotliHistogramRemap)(in, in_size, clusters, num_clusters, out, histogram_symbols); BROTLI_FREE(m, clusters); /* Convert the context map to a canonical form. */ *out_size = FN(BrotliHistogramReindex)(m, out, histogram_symbols, in_size); if (BROTLI_IS_OOM(m)) return; }) #undef HistogramType