관리-도구
편집 파일: aix.c
/* Copyright Joyent, Inc. and other Node contributors. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "uv.h" #include "internal.h" #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <errno.h> #include <sys/types.h> #include <sys/socket.h> #include <sys/ioctl.h> #include <net/if.h> #include <netinet/in.h> #include <arpa/inet.h> #include <sys/time.h> #include <unistd.h> #include <fcntl.h> #include <utmp.h> #include <libgen.h> #include <sys/protosw.h> #include <libperfstat.h> #include <procinfo.h> #include <sys/proc.h> #include <sys/procfs.h> #include <sys/poll.h> #include <sys/pollset.h> #include <ctype.h> #ifdef HAVE_SYS_AHAFS_EVPRODS_H #include <sys/ahafs_evProds.h> #endif #include <sys/mntctl.h> #include <sys/vmount.h> #include <limits.h> #include <strings.h> #include <sys/vnode.h> #define RDWR_BUF_SIZE 4096 #define EQ(a,b) (strcmp(a,b) == 0) int uv__platform_loop_init(uv_loop_t* loop) { loop->fs_fd = -1; /* Passing maxfd of -1 should mean the limit is determined * by the user's ulimit or the global limit as per the doc */ loop->backend_fd = pollset_create(-1); if (loop->backend_fd == -1) return -1; return 0; } void uv__platform_loop_delete(uv_loop_t* loop) { if (loop->fs_fd != -1) { uv__close(loop->fs_fd); loop->fs_fd = -1; } if (loop->backend_fd != -1) { pollset_destroy(loop->backend_fd); loop->backend_fd = -1; } } void uv__io_poll(uv_loop_t* loop, int timeout) { struct pollfd events[1024]; struct pollfd pqry; struct pollfd* pe; struct poll_ctl pc; QUEUE* q; uv__io_t* w; uint64_t base; uint64_t diff; int nevents; int count; int nfds; int i; int rc; int add_failed; if (loop->nfds == 0) { assert(QUEUE_EMPTY(&loop->watcher_queue)); return; } while (!QUEUE_EMPTY(&loop->watcher_queue)) { q = QUEUE_HEAD(&loop->watcher_queue); QUEUE_REMOVE(q); QUEUE_INIT(q); w = QUEUE_DATA(q, uv__io_t, watcher_queue); assert(w->pevents != 0); assert(w->fd >= 0); assert(w->fd < (int) loop->nwatchers); pc.events = w->pevents; pc.fd = w->fd; add_failed = 0; if (w->events == 0) { pc.cmd = PS_ADD; if (pollset_ctl(loop->backend_fd, &pc, 1)) { if (errno != EINVAL) { assert(0 && "Failed to add file descriptor (pc.fd) to pollset"); abort(); } /* Check if the fd is already in the pollset */ pqry.fd = pc.fd; rc = pollset_query(loop->backend_fd, &pqry); switch (rc) { case -1: assert(0 && "Failed to query pollset for file descriptor"); abort(); case 0: assert(0 && "Pollset does not contain file descriptor"); abort(); } /* If we got here then the pollset already contained the file descriptor even though * we didn't think it should. This probably shouldn't happen, but we can continue. */ add_failed = 1; } } if (w->events != 0 || add_failed) { /* Modify, potentially removing events -- need to delete then add. * Could maybe mod if we knew for sure no events are removed, but * content of w->events is handled above as not reliable (falls back) * so may require a pollset_query() which would have to be pretty cheap * compared to a PS_DELETE to be worth optimizing. Alternatively, could * lazily remove events, squelching them in the mean time. */ pc.cmd = PS_DELETE; if (pollset_ctl(loop->backend_fd, &pc, 1)) { assert(0 && "Failed to delete file descriptor (pc.fd) from pollset"); abort(); } pc.cmd = PS_ADD; if (pollset_ctl(loop->backend_fd, &pc, 1)) { assert(0 && "Failed to add file descriptor (pc.fd) to pollset"); abort(); } } w->events = w->pevents; } assert(timeout >= -1); base = loop->time; count = 48; /* Benchmarks suggest this gives the best throughput. */ for (;;) { nfds = pollset_poll(loop->backend_fd, events, ARRAY_SIZE(events), timeout); /* Update loop->time unconditionally. It's tempting to skip the update when * timeout == 0 (i.e. non-blocking poll) but there is no guarantee that the * operating system didn't reschedule our process while in the syscall. */ SAVE_ERRNO(uv__update_time(loop)); if (nfds == 0) { assert(timeout != -1); return; } if (nfds == -1) { if (errno != EINTR) { abort(); } if (timeout == -1) continue; if (timeout == 0) return; /* Interrupted by a signal. Update timeout and poll again. */ goto update_timeout; } nevents = 0; assert(loop->watchers != NULL); loop->watchers[loop->nwatchers] = (void*) events; loop->watchers[loop->nwatchers + 1] = (void*) (uintptr_t) nfds; for (i = 0; i < nfds; i++) { pe = events + i; pc.cmd = PS_DELETE; pc.fd = pe->fd; /* Skip invalidated events, see uv__platform_invalidate_fd */ if (pc.fd == -1) continue; assert(pc.fd >= 0); assert((unsigned) pc.fd < loop->nwatchers); w = loop->watchers[pc.fd]; if (w == NULL) { /* File descriptor that we've stopped watching, disarm it. * * Ignore all errors because we may be racing with another thread * when the file descriptor is closed. */ pollset_ctl(loop->backend_fd, &pc, 1); continue; } w->cb(loop, w, pe->revents); nevents++; } loop->watchers[loop->nwatchers] = NULL; loop->watchers[loop->nwatchers + 1] = NULL; if (nevents != 0) { if (nfds == ARRAY_SIZE(events) && --count != 0) { /* Poll for more events but don't block this time. */ timeout = 0; continue; } return; } if (timeout == 0) return; if (timeout == -1) continue; update_timeout: assert(timeout > 0); diff = loop->time - base; if (diff >= (uint64_t) timeout) return; timeout -= diff; } } uint64_t uv__hrtime(uv_clocktype_t type) { uint64_t G = 1000000000; timebasestruct_t t; read_wall_time(&t, TIMEBASE_SZ); time_base_to_time(&t, TIMEBASE_SZ); return (uint64_t) t.tb_high * G + t.tb_low; } /* * We could use a static buffer for the path manipulations that we need outside * of the function, but this function could be called by multiple consumers and * we don't want to potentially create a race condition in the use of snprintf. * There is no direct way of getting the exe path in AIX - either through /procfs * or through some libc APIs. The below approach is to parse the argv[0]'s pattern * and use it in conjunction with PATH environment variable to craft one. */ int uv_exepath(char* buffer, size_t* size) { int res; char args[PATH_MAX]; char abspath[PATH_MAX]; size_t abspath_size; struct procsinfo pi; if (buffer == NULL || size == NULL || *size == 0) return -EINVAL; pi.pi_pid = getpid(); res = getargs(&pi, sizeof(pi), args, sizeof(args)); if (res < 0) return -EINVAL; /* * Possibilities for args: * i) an absolute path such as: /home/user/myprojects/nodejs/node * ii) a relative path such as: ./node or ../myprojects/nodejs/node * iii) a bare filename such as "node", after exporting PATH variable * to its location. */ /* Case i) and ii) absolute or relative paths */ if (strchr(args, '/') != NULL) { if (realpath(args, abspath) != abspath) return -errno; abspath_size = strlen(abspath); *size -= 1; if (*size > abspath_size) *size = abspath_size; memcpy(buffer, abspath, *size); buffer[*size] = '\0'; return 0; } else { /* Case iii). Search PATH environment variable */ char trypath[PATH_MAX]; char *clonedpath = NULL; char *token = NULL; char *path = getenv("PATH"); if (path == NULL) return -EINVAL; clonedpath = uv__strdup(path); if (clonedpath == NULL) return -ENOMEM; token = strtok(clonedpath, ":"); while (token != NULL) { snprintf(trypath, sizeof(trypath) - 1, "%s/%s", token, args); if (realpath(trypath, abspath) == abspath) { /* Check the match is executable */ if (access(abspath, X_OK) == 0) { abspath_size = strlen(abspath); *size -= 1; if (*size > abspath_size) *size = abspath_size; memcpy(buffer, abspath, *size); buffer[*size] = '\0'; uv__free(clonedpath); return 0; } } token = strtok(NULL, ":"); } uv__free(clonedpath); /* Out of tokens (path entries), and no match found */ return -EINVAL; } } uint64_t uv_get_free_memory(void) { perfstat_memory_total_t mem_total; int result = perfstat_memory_total(NULL, &mem_total, sizeof(mem_total), 1); if (result == -1) { return 0; } return mem_total.real_free * 4096; } uint64_t uv_get_total_memory(void) { perfstat_memory_total_t mem_total; int result = perfstat_memory_total(NULL, &mem_total, sizeof(mem_total), 1); if (result == -1) { return 0; } return mem_total.real_total * 4096; } void uv_loadavg(double avg[3]) { perfstat_cpu_total_t ps_total; int result = perfstat_cpu_total(NULL, &ps_total, sizeof(ps_total), 1); if (result == -1) { avg[0] = 0.; avg[1] = 0.; avg[2] = 0.; return; } avg[0] = ps_total.loadavg[0] / (double)(1 << SBITS); avg[1] = ps_total.loadavg[1] / (double)(1 << SBITS); avg[2] = ps_total.loadavg[2] / (double)(1 << SBITS); } #ifdef HAVE_SYS_AHAFS_EVPRODS_H static char *uv__rawname(char *cp) { static char rawbuf[FILENAME_MAX+1]; char *dp = rindex(cp, '/'); if (dp == 0) return 0; *dp = 0; strcpy(rawbuf, cp); *dp = '/'; strcat(rawbuf, "/r"); strcat(rawbuf, dp+1); return rawbuf; } /* * Determine whether given pathname is a directory * Returns 0 if the path is a directory, -1 if not * * Note: Opportunity here for more detailed error information but * that requires changing callers of this function as well */ static int uv__path_is_a_directory(char* filename) { struct stat statbuf; if (stat(filename, &statbuf) < 0) return -1; /* failed: not a directory, assume it is a file */ if (statbuf.st_type == VDIR) return 0; return -1; } /* * Check whether AHAFS is mounted. * Returns 0 if AHAFS is mounted, or an error code < 0 on failure */ static int uv__is_ahafs_mounted(void){ int rv, i = 2; struct vmount *p; int size_multiplier = 10; size_t siz = sizeof(struct vmount)*size_multiplier; struct vmount *vmt; const char *dev = "/aha"; char *obj, *stub; p = uv__malloc(siz); if (p == NULL) return -errno; /* Retrieve all mounted filesystems */ rv = mntctl(MCTL_QUERY, siz, (char*)p); if (rv < 0) return -errno; if (rv == 0) { /* buffer was not large enough, reallocate to correct size */ siz = *(int*)p; uv__free(p); p = uv__malloc(siz); if (p == NULL) return -errno; rv = mntctl(MCTL_QUERY, siz, (char*)p); if (rv < 0) return -errno; } /* Look for dev in filesystems mount info */ for(vmt = p, i = 0; i < rv; i++) { obj = vmt2dataptr(vmt, VMT_OBJECT); /* device */ stub = vmt2dataptr(vmt, VMT_STUB); /* mount point */ if (EQ(obj, dev) || EQ(uv__rawname(obj), dev) || EQ(stub, dev)) { uv__free(p); /* Found a match */ return 0; } vmt = (struct vmount *) ((char *) vmt + vmt->vmt_length); } /* /aha is required for monitoring filesystem changes */ return -1; } /* * Recursive call to mkdir() to create intermediate folders, if any * Returns code from mkdir call */ static int uv__makedir_p(const char *dir) { char tmp[256]; char *p = NULL; size_t len; int err; snprintf(tmp, sizeof(tmp),"%s",dir); len = strlen(tmp); if (tmp[len - 1] == '/') tmp[len - 1] = 0; for (p = tmp + 1; *p; p++) { if (*p == '/') { *p = 0; err = mkdir(tmp, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH); if(err != 0) return err; *p = '/'; } } return mkdir(tmp, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH); } /* * Creates necessary subdirectories in the AIX Event Infrastructure * file system for monitoring the object specified. * Returns code from mkdir call */ static int uv__make_subdirs_p(const char *filename) { char cmd[2048]; char *p; int rc = 0; /* Strip off the monitor file name */ p = strrchr(filename, '/'); if (p == NULL) return 0; if (uv__path_is_a_directory((char*)filename) == 0) { sprintf(cmd, "/aha/fs/modDir.monFactory"); } else { sprintf(cmd, "/aha/fs/modFile.monFactory"); } strncat(cmd, filename, (p - filename)); rc = uv__makedir_p(cmd); if (rc == -1 && errno != EEXIST){ return -errno; } return rc; } /* * Checks if /aha is mounted, then proceeds to set up the monitoring * objects for the specified file. * Returns 0 on success, or an error code < 0 on failure */ static int uv__setup_ahafs(const char* filename, int *fd) { int rc = 0; char mon_file_write_string[RDWR_BUF_SIZE]; char mon_file[PATH_MAX]; int file_is_directory = 0; /* -1 == NO, 0 == YES */ /* Create monitor file name for object */ file_is_directory = uv__path_is_a_directory((char*)filename); if (file_is_directory == 0) sprintf(mon_file, "/aha/fs/modDir.monFactory"); else sprintf(mon_file, "/aha/fs/modFile.monFactory"); if ((strlen(mon_file) + strlen(filename) + 5) > PATH_MAX) return -ENAMETOOLONG; /* Make the necessary subdirectories for the monitor file */ rc = uv__make_subdirs_p(filename); if (rc == -1 && errno != EEXIST) return rc; strcat(mon_file, filename); strcat(mon_file, ".mon"); *fd = 0; errno = 0; /* Open the monitor file, creating it if necessary */ *fd = open(mon_file, O_CREAT|O_RDWR); if (*fd < 0) return -errno; /* Write out the monitoring specifications. * In this case, we are monitoring for a state change event type * CHANGED=YES * We will be waiting in select call, rather than a read: * WAIT_TYPE=WAIT_IN_SELECT * We only want minimal information for files: * INFO_LVL=1 * For directories, we want more information to track what file * caused the change * INFO_LVL=2 */ if (file_is_directory == 0) sprintf(mon_file_write_string, "CHANGED=YES;WAIT_TYPE=WAIT_IN_SELECT;INFO_LVL=2"); else sprintf(mon_file_write_string, "CHANGED=YES;WAIT_TYPE=WAIT_IN_SELECT;INFO_LVL=1"); rc = write(*fd, mon_file_write_string, strlen(mon_file_write_string)+1); if (rc < 0) return -errno; return 0; } /* * Skips a specified number of lines in the buffer passed in. * Walks the buffer pointed to by p and attempts to skip n lines. * Returns the total number of lines skipped */ static int uv__skip_lines(char **p, int n) { int lines = 0; while(n > 0) { *p = strchr(*p, '\n'); if (!p) return lines; (*p)++; n--; lines++; } return lines; } /* * Parse the event occurrence data to figure out what event just occurred * and take proper action. * * The buf is a pointer to the buffer containing the event occurrence data * Returns 0 on success, -1 if unrecoverable error in parsing * */ static int uv__parse_data(char *buf, int *events, uv_fs_event_t* handle) { int evp_rc, i; char *p; char filename[PATH_MAX]; /* To be used when handling directories */ p = buf; *events = 0; /* Clean the filename buffer*/ for(i = 0; i < PATH_MAX; i++) { filename[i] = 0; } i = 0; /* Check for BUF_WRAP */ if (strncmp(buf, "BUF_WRAP", strlen("BUF_WRAP")) == 0) { assert(0 && "Buffer wrap detected, Some event occurrences lost!"); return 0; } /* Since we are using the default buffer size (4K), and have specified * INFO_LVL=1, we won't see any EVENT_OVERFLOW conditions. Applications * should check for this keyword if they are using an INFO_LVL of 2 or * higher, and have a buffer size of <= 4K */ /* Skip to RC_FROM_EVPROD */ if (uv__skip_lines(&p, 9) != 9) return -1; if (sscanf(p, "RC_FROM_EVPROD=%d\nEND_EVENT_DATA", &evp_rc) == 1) { if (uv__path_is_a_directory(handle->path) == 0) { /* Directory */ if (evp_rc == AHAFS_MODDIR_UNMOUNT || evp_rc == AHAFS_MODDIR_REMOVE_SELF) { /* The directory is no longer available for monitoring */ *events = UV_RENAME; handle->dir_filename = NULL; } else { /* A file was added/removed inside the directory */ *events = UV_CHANGE; /* Get the EVPROD_INFO */ if (uv__skip_lines(&p, 1) != 1) return -1; /* Scan out the name of the file that triggered the event*/ if (sscanf(p, "BEGIN_EVPROD_INFO\n%sEND_EVPROD_INFO", filename) == 1) { handle->dir_filename = uv__strdup((const char*)&filename); } else return -1; } } else { /* Regular File */ if (evp_rc == AHAFS_MODFILE_RENAME) *events = UV_RENAME; else *events = UV_CHANGE; } } else return -1; return 0; } /* This is the internal callback */ static void uv__ahafs_event(uv_loop_t* loop, uv__io_t* event_watch, unsigned int fflags) { char result_data[RDWR_BUF_SIZE]; int bytes, rc = 0; uv_fs_event_t* handle; int events = 0; int i = 0; char fname[PATH_MAX]; char *p; handle = container_of(event_watch, uv_fs_event_t, event_watcher); /* Clean all the buffers*/ for(i = 0; i < PATH_MAX; i++) { fname[i] = 0; } i = 0; /* At this point, we assume that polling has been done on the * file descriptor, so we can just read the AHAFS event occurrence * data and parse its results without having to block anything */ bytes = pread(event_watch->fd, result_data, RDWR_BUF_SIZE, 0); assert((bytes <= 0) && "uv__ahafs_event - Error reading monitor file"); /* Parse the data */ if(bytes > 0) rc = uv__parse_data(result_data, &events, handle); /* For directory changes, the name of the files that triggered the change * are never absolute pathnames */ if (uv__path_is_a_directory(handle->path) == 0) { p = handle->dir_filename; while(*p != NULL){ fname[i]= *p; i++; p++; } } else { /* For file changes, figure out whether filename is absolute or not */ if (handle->path[0] == '/') { p = strrchr(handle->path, '/'); p++; while(*p != NULL) { fname[i]= *p; i++; p++; } } } /* Unrecoverable error */ if (rc == -1) return; else /* Call the actual JavaScript callback function */ handle->cb(handle, (const char*)&fname, events, 0); } #endif int uv_fs_event_init(uv_loop_t* loop, uv_fs_event_t* handle) { #ifdef HAVE_SYS_AHAFS_EVPRODS_H uv__handle_init(loop, (uv_handle_t*)handle, UV_FS_EVENT); return 0; #else return -ENOSYS; #endif } int uv_fs_event_start(uv_fs_event_t* handle, uv_fs_event_cb cb, const char* filename, unsigned int flags) { #ifdef HAVE_SYS_AHAFS_EVPRODS_H int fd, rc, i = 0, res = 0; char cwd[PATH_MAX]; char absolute_path[PATH_MAX]; char fname[PATH_MAX]; char *p; /* Clean all the buffers*/ for(i = 0; i < PATH_MAX; i++) { cwd[i] = 0; absolute_path[i] = 0; fname[i] = 0; } i = 0; /* Figure out whether filename is absolute or not */ if (filename[0] == '/') { /* We have absolute pathname, create the relative pathname*/ sprintf(absolute_path, filename); p = strrchr(filename, '/'); p++; } else { if (filename[0] == '.' && filename[1] == '/') { /* We have a relative pathname, compose the absolute pathname */ sprintf(fname, filename); snprintf(cwd, PATH_MAX-1, "/proc/%lu/cwd", (unsigned long) getpid()); res = readlink(cwd, absolute_path, sizeof(absolute_path) - 1); if (res < 0) return res; p = strrchr(absolute_path, '/'); p++; p++; } else { /* We have a relative pathname, compose the absolute pathname */ sprintf(fname, filename); snprintf(cwd, PATH_MAX-1, "/proc/%lu/cwd", (unsigned long) getpid()); res = readlink(cwd, absolute_path, sizeof(absolute_path) - 1); if (res < 0) return res; p = strrchr(absolute_path, '/'); p++; } /* Copy to filename buffer */ while(filename[i] != NULL) { *p = filename[i]; i++; p++; } } if (uv__is_ahafs_mounted() < 0) /* /aha checks failed */ return UV_ENOSYS; /* Setup ahafs */ rc = uv__setup_ahafs((const char *)absolute_path, &fd); if (rc != 0) return rc; /* Setup/Initialize all the libuv routines */ uv__handle_start(handle); uv__io_init(&handle->event_watcher, uv__ahafs_event, fd); handle->path = uv__strdup((const char*)&absolute_path); handle->cb = cb; uv__io_start(handle->loop, &handle->event_watcher, UV__POLLIN); return 0; #else return -ENOSYS; #endif } int uv_fs_event_stop(uv_fs_event_t* handle) { #ifdef HAVE_SYS_AHAFS_EVPRODS_H if (!uv__is_active(handle)) return 0; uv__io_close(handle->loop, &handle->event_watcher); uv__handle_stop(handle); if (uv__path_is_a_directory(handle->path) == 0) { uv__free(handle->dir_filename); handle->dir_filename = NULL; } uv__free(handle->path); handle->path = NULL; uv__close(handle->event_watcher.fd); handle->event_watcher.fd = -1; return 0; #else return -ENOSYS; #endif } void uv__fs_event_close(uv_fs_event_t* handle) { #ifdef HAVE_SYS_AHAFS_EVPRODS_H uv_fs_event_stop(handle); #else UNREACHABLE(); #endif } char** uv_setup_args(int argc, char** argv) { return argv; } int uv_set_process_title(const char* title) { return 0; } int uv_get_process_title(char* buffer, size_t size) { if (size > 0) { buffer[0] = '\0'; } return 0; } int uv_resident_set_memory(size_t* rss) { char pp[64]; psinfo_t psinfo; int err; int fd; snprintf(pp, sizeof(pp), "/proc/%lu/psinfo", (unsigned long) getpid()); fd = open(pp, O_RDONLY); if (fd == -1) return -errno; /* FIXME(bnoordhuis) Handle EINTR. */ err = -EINVAL; if (read(fd, &psinfo, sizeof(psinfo)) == sizeof(psinfo)) { *rss = (size_t)psinfo.pr_rssize * 1024; err = 0; } uv__close(fd); return err; } int uv_uptime(double* uptime) { struct utmp *utmp_buf; size_t entries = 0; time_t boot_time; utmpname(UTMP_FILE); setutent(); while ((utmp_buf = getutent()) != NULL) { if (utmp_buf->ut_user[0] && utmp_buf->ut_type == USER_PROCESS) ++entries; if (utmp_buf->ut_type == BOOT_TIME) boot_time = utmp_buf->ut_time; } endutent(); if (boot_time == 0) return -ENOSYS; *uptime = time(NULL) - boot_time; return 0; } int uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count) { uv_cpu_info_t* cpu_info; perfstat_cpu_total_t ps_total; perfstat_cpu_t* ps_cpus; perfstat_id_t cpu_id; int result, ncpus, idx = 0; result = perfstat_cpu_total(NULL, &ps_total, sizeof(ps_total), 1); if (result == -1) { return -ENOSYS; } ncpus = result = perfstat_cpu(NULL, NULL, sizeof(perfstat_cpu_t), 0); if (result == -1) { return -ENOSYS; } ps_cpus = (perfstat_cpu_t*) uv__malloc(ncpus * sizeof(perfstat_cpu_t)); if (!ps_cpus) { return -ENOMEM; } strcpy(cpu_id.name, FIRST_CPU); result = perfstat_cpu(&cpu_id, ps_cpus, sizeof(perfstat_cpu_t), ncpus); if (result == -1) { uv__free(ps_cpus); return -ENOSYS; } *cpu_infos = (uv_cpu_info_t*) uv__malloc(ncpus * sizeof(uv_cpu_info_t)); if (!*cpu_infos) { uv__free(ps_cpus); return -ENOMEM; } *count = ncpus; cpu_info = *cpu_infos; while (idx < ncpus) { cpu_info->speed = (int)(ps_total.processorHZ / 1000000); cpu_info->model = uv__strdup(ps_total.description); cpu_info->cpu_times.user = ps_cpus[idx].user; cpu_info->cpu_times.sys = ps_cpus[idx].sys; cpu_info->cpu_times.idle = ps_cpus[idx].idle; cpu_info->cpu_times.irq = ps_cpus[idx].wait; cpu_info->cpu_times.nice = 0; cpu_info++; idx++; } uv__free(ps_cpus); return 0; } void uv_free_cpu_info(uv_cpu_info_t* cpu_infos, int count) { int i; for (i = 0; i < count; ++i) { uv__free(cpu_infos[i].model); } uv__free(cpu_infos); } int uv_interface_addresses(uv_interface_address_t** addresses, int* count) { uv_interface_address_t* address; int sockfd, size = 1; struct ifconf ifc; struct ifreq *ifr, *p, flg; *count = 0; if (0 > (sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_IP))) { return -errno; } if (ioctl(sockfd, SIOCGSIZIFCONF, &size) == -1) { SAVE_ERRNO(uv__close(sockfd)); return -errno; } ifc.ifc_req = (struct ifreq*)uv__malloc(size); ifc.ifc_len = size; if (ioctl(sockfd, SIOCGIFCONF, &ifc) == -1) { SAVE_ERRNO(uv__close(sockfd)); return -errno; } #define ADDR_SIZE(p) MAX((p).sa_len, sizeof(p)) /* Count all up and running ipv4/ipv6 addresses */ ifr = ifc.ifc_req; while ((char*)ifr < (char*)ifc.ifc_req + ifc.ifc_len) { p = ifr; ifr = (struct ifreq*) ((char*)ifr + sizeof(ifr->ifr_name) + ADDR_SIZE(ifr->ifr_addr)); if (!(p->ifr_addr.sa_family == AF_INET6 || p->ifr_addr.sa_family == AF_INET)) continue; memcpy(flg.ifr_name, p->ifr_name, sizeof(flg.ifr_name)); if (ioctl(sockfd, SIOCGIFFLAGS, &flg) == -1) { SAVE_ERRNO(uv__close(sockfd)); return -errno; } if (!(flg.ifr_flags & IFF_UP && flg.ifr_flags & IFF_RUNNING)) continue; (*count)++; } /* Alloc the return interface structs */ *addresses = (uv_interface_address_t*) uv__malloc(*count * sizeof(uv_interface_address_t)); if (!(*addresses)) { uv__close(sockfd); return -ENOMEM; } address = *addresses; ifr = ifc.ifc_req; while ((char*)ifr < (char*)ifc.ifc_req + ifc.ifc_len) { p = ifr; ifr = (struct ifreq*) ((char*)ifr + sizeof(ifr->ifr_name) + ADDR_SIZE(ifr->ifr_addr)); if (!(p->ifr_addr.sa_family == AF_INET6 || p->ifr_addr.sa_family == AF_INET)) continue; memcpy(flg.ifr_name, p->ifr_name, sizeof(flg.ifr_name)); if (ioctl(sockfd, SIOCGIFFLAGS, &flg) == -1) { uv__close(sockfd); return -ENOSYS; } if (!(flg.ifr_flags & IFF_UP && flg.ifr_flags & IFF_RUNNING)) continue; /* All conditions above must match count loop */ address->name = uv__strdup(p->ifr_name); if (p->ifr_addr.sa_family == AF_INET6) { address->address.address6 = *((struct sockaddr_in6*) &p->ifr_addr); } else { address->address.address4 = *((struct sockaddr_in*) &p->ifr_addr); } /* TODO: Retrieve netmask using SIOCGIFNETMASK ioctl */ address->is_internal = flg.ifr_flags & IFF_LOOPBACK ? 1 : 0; address++; } #undef ADDR_SIZE uv__close(sockfd); return 0; } void uv_free_interface_addresses(uv_interface_address_t* addresses, int count) { int i; for (i = 0; i < count; ++i) { uv__free(addresses[i].name); } uv__free(addresses); } void uv__platform_invalidate_fd(uv_loop_t* loop, int fd) { struct pollfd* events; uintptr_t i; uintptr_t nfds; struct poll_ctl pc; assert(loop->watchers != NULL); events = (struct pollfd*) loop->watchers[loop->nwatchers]; nfds = (uintptr_t) loop->watchers[loop->nwatchers + 1]; if (events != NULL) /* Invalidate events with same file descriptor */ for (i = 0; i < nfds; i++) if ((int) events[i].fd == fd) events[i].fd = -1; /* Remove the file descriptor from the poll set */ pc.events = 0; pc.cmd = PS_DELETE; pc.fd = fd; if(loop->backend_fd >= 0) pollset_ctl(loop->backend_fd, &pc, 1); }