관리-도구
편집 파일: insn_compiler.rb
# frozen_string_literal: true module RubyVM::RJIT class InsnCompiler # struct rb_calling_info. Storing flags instead of ci. CallingInfo = Struct.new(:argc, :flags, :kwarg, :ci_addr, :send_shift, :block_handler) do def kw_splat = flags & C::VM_CALL_KW_SPLAT != 0 end # @param ocb [CodeBlock] # @param exit_compiler [RubyVM::RJIT::ExitCompiler] def initialize(cb, ocb, exit_compiler) @ocb = ocb @exit_compiler = exit_compiler @cfunc_codegen_table = {} register_cfunc_codegen_funcs end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] # @param insn `RubyVM::RJIT::Instruction` def compile(jit, ctx, asm, insn) asm.incr_counter(:rjit_insns_count) stack = ctx.stack_size.times.map do |stack_idx| ctx.get_opnd_type(StackOpnd[ctx.stack_size - stack_idx - 1]).type end locals = jit.iseq.body.local_table_size.times.map do |local_idx| (ctx.local_types[local_idx] || Type::Unknown).type end insn_idx = format('%04d', (jit.pc.to_i - jit.iseq.body.iseq_encoded.to_i) / C.VALUE.size) asm.comment("Insn: #{insn_idx} #{insn.name} (stack: [#{stack.join(', ')}], locals: [#{locals.join(', ')}])") # 83/102 case insn.name when :nop then nop(jit, ctx, asm) when :getlocal then getlocal(jit, ctx, asm) when :setlocal then setlocal(jit, ctx, asm) when :getblockparam then getblockparam(jit, ctx, asm) # setblockparam when :getblockparamproxy then getblockparamproxy(jit, ctx, asm) when :getspecial then getspecial(jit, ctx, asm) # setspecial when :getinstancevariable then getinstancevariable(jit, ctx, asm) when :setinstancevariable then setinstancevariable(jit, ctx, asm) when :getclassvariable then getclassvariable(jit, ctx, asm) when :setclassvariable then setclassvariable(jit, ctx, asm) when :opt_getconstant_path then opt_getconstant_path(jit, ctx, asm) when :getconstant then getconstant(jit, ctx, asm) # setconstant when :getglobal then getglobal(jit, ctx, asm) # setglobal when :putnil then putnil(jit, ctx, asm) when :putself then putself(jit, ctx, asm) when :putobject then putobject(jit, ctx, asm) when :putspecialobject then putspecialobject(jit, ctx, asm) when :putstring then putstring(jit, ctx, asm) when :concatstrings then concatstrings(jit, ctx, asm) when :anytostring then anytostring(jit, ctx, asm) when :toregexp then toregexp(jit, ctx, asm) when :intern then intern(jit, ctx, asm) when :newarray then newarray(jit, ctx, asm) # newarraykwsplat when :duparray then duparray(jit, ctx, asm) # duphash when :expandarray then expandarray(jit, ctx, asm) when :concatarray then concatarray(jit, ctx, asm) when :splatarray then splatarray(jit, ctx, asm) when :newhash then newhash(jit, ctx, asm) when :newrange then newrange(jit, ctx, asm) when :pop then pop(jit, ctx, asm) when :dup then dup(jit, ctx, asm) when :dupn then dupn(jit, ctx, asm) when :swap then swap(jit, ctx, asm) # opt_reverse when :topn then topn(jit, ctx, asm) when :setn then setn(jit, ctx, asm) when :adjuststack then adjuststack(jit, ctx, asm) when :defined then defined(jit, ctx, asm) when :definedivar then definedivar(jit, ctx, asm) # checkmatch when :checkkeyword then checkkeyword(jit, ctx, asm) # checktype # defineclass # definemethod # definesmethod when :send then send(jit, ctx, asm) when :opt_send_without_block then opt_send_without_block(jit, ctx, asm) when :objtostring then objtostring(jit, ctx, asm) when :opt_str_freeze then opt_str_freeze(jit, ctx, asm) when :opt_nil_p then opt_nil_p(jit, ctx, asm) # opt_str_uminus when :opt_newarray_send then opt_newarray_send(jit, ctx, asm) when :invokesuper then invokesuper(jit, ctx, asm) when :invokeblock then invokeblock(jit, ctx, asm) when :leave then leave(jit, ctx, asm) when :throw then throw(jit, ctx, asm) when :jump then jump(jit, ctx, asm) when :branchif then branchif(jit, ctx, asm) when :branchunless then branchunless(jit, ctx, asm) when :branchnil then branchnil(jit, ctx, asm) # once when :opt_case_dispatch then opt_case_dispatch(jit, ctx, asm) when :opt_plus then opt_plus(jit, ctx, asm) when :opt_minus then opt_minus(jit, ctx, asm) when :opt_mult then opt_mult(jit, ctx, asm) when :opt_div then opt_div(jit, ctx, asm) when :opt_mod then opt_mod(jit, ctx, asm) when :opt_eq then opt_eq(jit, ctx, asm) when :opt_neq then opt_neq(jit, ctx, asm) when :opt_lt then opt_lt(jit, ctx, asm) when :opt_le then opt_le(jit, ctx, asm) when :opt_gt then opt_gt(jit, ctx, asm) when :opt_ge then opt_ge(jit, ctx, asm) when :opt_ltlt then opt_ltlt(jit, ctx, asm) when :opt_and then opt_and(jit, ctx, asm) when :opt_or then opt_or(jit, ctx, asm) when :opt_aref then opt_aref(jit, ctx, asm) when :opt_aset then opt_aset(jit, ctx, asm) # opt_aset_with # opt_aref_with when :opt_length then opt_length(jit, ctx, asm) when :opt_size then opt_size(jit, ctx, asm) when :opt_empty_p then opt_empty_p(jit, ctx, asm) when :opt_succ then opt_succ(jit, ctx, asm) when :opt_not then opt_not(jit, ctx, asm) when :opt_regexpmatch2 then opt_regexpmatch2(jit, ctx, asm) # invokebuiltin when :opt_invokebuiltin_delegate then opt_invokebuiltin_delegate(jit, ctx, asm) when :opt_invokebuiltin_delegate_leave then opt_invokebuiltin_delegate_leave(jit, ctx, asm) when :getlocal_WC_0 then getlocal_WC_0(jit, ctx, asm) when :getlocal_WC_1 then getlocal_WC_1(jit, ctx, asm) when :setlocal_WC_0 then setlocal_WC_0(jit, ctx, asm) when :setlocal_WC_1 then setlocal_WC_1(jit, ctx, asm) when :putobject_INT2FIX_0_ then putobject_INT2FIX_0_(jit, ctx, asm) when :putobject_INT2FIX_1_ then putobject_INT2FIX_1_(jit, ctx, asm) else CantCompile end end private # # Insns # # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def nop(jit, ctx, asm) # Do nothing KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def getlocal(jit, ctx, asm) idx = jit.operand(0) level = jit.operand(1) jit_getlocal_generic(jit, ctx, asm, idx:, level:) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def getlocal_WC_0(jit, ctx, asm) idx = jit.operand(0) jit_getlocal_generic(jit, ctx, asm, idx:, level: 0) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def getlocal_WC_1(jit, ctx, asm) idx = jit.operand(0) jit_getlocal_generic(jit, ctx, asm, idx:, level: 1) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def setlocal(jit, ctx, asm) idx = jit.operand(0) level = jit.operand(1) jit_setlocal_generic(jit, ctx, asm, idx:, level:) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def setlocal_WC_0(jit, ctx, asm) idx = jit.operand(0) jit_setlocal_generic(jit, ctx, asm, idx:, level: 0) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def setlocal_WC_1(jit, ctx, asm) idx = jit.operand(0) jit_setlocal_generic(jit, ctx, asm, idx:, level: 1) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def getblockparam(jit, ctx, asm) # EP level level = jit.operand(1) # Save the PC and SP because we might allocate jit_prepare_routine_call(jit, ctx, asm) # A mirror of the interpreter code. Checking for the case # where it's pushing rb_block_param_proxy. side_exit = side_exit(jit, ctx) # Load environment pointer EP from CFP ep_reg = :rax jit_get_ep(asm, level, reg: ep_reg) # Bail when VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) is non zero # FIXME: This is testing bits in the same place that the WB check is testing. # We should combine these at some point asm.test([ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS], C::VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) # If the frame flag has been modified, then the actual proc value is # already in the EP and we should just use the value. frame_flag_modified = asm.new_label('frame_flag_modified') asm.jnz(frame_flag_modified) # This instruction writes the block handler to the EP. If we need to # fire a write barrier for the write, then exit (we'll let the # interpreter handle it so it can fire the write barrier). # flags & VM_ENV_FLAG_WB_REQUIRED asm.test([ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS], C::VM_ENV_FLAG_WB_REQUIRED) # if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0 asm.jnz(side_exit) # Convert the block handler in to a proc # call rb_vm_bh_to_procval(const rb_execution_context_t *ec, VALUE block_handler) asm.mov(C_ARGS[0], EC) # The block handler for the current frame # note, VM_ASSERT(VM_ENV_LOCAL_P(ep)) asm.mov(C_ARGS[1], [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) asm.call(C.rb_vm_bh_to_procval) # Load environment pointer EP from CFP (again) ep_reg = :rcx jit_get_ep(asm, level, reg: ep_reg) # Write the value at the environment pointer idx = jit.operand(0) offs = -(C.VALUE.size * idx) asm.mov([ep_reg, offs], C_RET); # Set the frame modified flag asm.mov(:rax, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS]) # flag_check asm.or(:rax, C::VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) # modified_flag asm.mov([ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS], :rax) asm.write_label(frame_flag_modified) # Push the proc on the stack stack_ret = ctx.stack_push(Type::Unknown) ep_reg = :rax jit_get_ep(asm, level, reg: ep_reg) asm.mov(:rax, [ep_reg, offs]) asm.mov(stack_ret, :rax) KeepCompiling end # setblockparam # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def getblockparamproxy(jit, ctx, asm) # To get block_handler unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end starting_context = ctx.dup # make a copy for use with jit_chain_guard # A mirror of the interpreter code. Checking for the case # where it's pushing rb_block_param_proxy. side_exit = side_exit(jit, ctx) # EP level level = jit.operand(1) # Peek at the block handler so we can check whether it's nil comptime_handler = jit.peek_at_block_handler(level) # When a block handler is present, it should always be a GC-guarded # pointer (VM_BH_ISEQ_BLOCK_P) if comptime_handler != 0 && comptime_handler & 0x3 != 0x1 asm.incr_counter(:getblockpp_not_gc_guarded) return CantCompile end # Load environment pointer EP from CFP ep_reg = :rax jit_get_ep(asm, level, reg: ep_reg) # Bail when VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) is non zero asm.test([ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS], C::VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) asm.jnz(counted_exit(side_exit, :getblockpp_block_param_modified)) # Load the block handler for the current frame # note, VM_ASSERT(VM_ENV_LOCAL_P(ep)) block_handler = :rax asm.mov(block_handler, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # Specialize compilation for the case where no block handler is present if comptime_handler == 0 # Bail if there is a block handler asm.cmp(block_handler, 0) jit_chain_guard(:jnz, jit, starting_context, asm, counted_exit(side_exit, :getblockpp_block_handler_none)) putobject(jit, ctx, asm, val: Qnil) else # Block handler is a tagged pointer. Look at the tag. 0x03 is from VM_BH_ISEQ_BLOCK_P(). asm.and(block_handler, 0x3) # Bail unless VM_BH_ISEQ_BLOCK_P(bh). This also checks for null. asm.cmp(block_handler, 0x1) jit_chain_guard(:jnz, jit, starting_context, asm, counted_exit(side_exit, :getblockpp_not_iseq_block)) # Push rb_block_param_proxy. It's a root, so no need to use jit_mov_gc_ptr. top = ctx.stack_push(Type::BlockParamProxy) asm.mov(:rax, C.rb_block_param_proxy) asm.mov(top, :rax) end jump_to_next_insn(jit, ctx, asm) EndBlock end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def getspecial(jit, ctx, asm) # This takes two arguments, key and type # key is only used when type == 0 # A non-zero type determines which type of backref to fetch #rb_num_t key = jit.jit_get_arg(0); rtype = jit.operand(1) if rtype == 0 # not yet implemented return CantCompile; elsif rtype & 0x01 != 0 # Fetch a "special" backref based on a char encoded by shifting by 1 # Can raise if matchdata uninitialized jit_prepare_routine_call(jit, ctx, asm) # call rb_backref_get() asm.comment('rb_backref_get') asm.call(C.rb_backref_get) asm.mov(C_ARGS[0], C_RET) # backref case [rtype >> 1].pack('c') in ?& asm.comment("rb_reg_last_match") asm.call(C.rb_reg_last_match) in ?` asm.comment("rb_reg_match_pre") asm.call(C.rb_reg_match_pre) in ?' asm.comment("rb_reg_match_post") asm.call(C.rb_reg_match_post) in ?+ asm.comment("rb_reg_match_last") asm.call(C.rb_reg_match_last) end stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) KeepCompiling else # Fetch the N-th match from the last backref based on type shifted by 1 # Can raise if matchdata uninitialized jit_prepare_routine_call(jit, ctx, asm) # call rb_backref_get() asm.comment('rb_backref_get') asm.call(C.rb_backref_get) # rb_reg_nth_match((int)(type >> 1), backref); asm.comment('rb_reg_nth_match') asm.mov(C_ARGS[0], rtype >> 1) asm.mov(C_ARGS[1], C_RET) # backref asm.call(C.rb_reg_nth_match) stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) KeepCompiling end end # setspecial # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def getinstancevariable(jit, ctx, asm) # Specialize on a compile-time receiver, and split a block for chain guards unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end id = jit.operand(0) comptime_obj = jit.peek_at_self jit_getivar(jit, ctx, asm, comptime_obj, id, nil, SelfOpnd) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def setinstancevariable(jit, ctx, asm) starting_context = ctx.dup # make a copy for use with jit_chain_guard # Defer compilation so we can specialize on a runtime `self` unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end ivar_name = jit.operand(0) comptime_receiver = jit.peek_at_self # If the comptime receiver is frozen, writing an IV will raise an exception # and we don't want to JIT code to deal with that situation. if C.rb_obj_frozen_p(comptime_receiver) asm.incr_counter(:setivar_frozen) return CantCompile end # Check if the comptime receiver is a T_OBJECT receiver_t_object = C::BUILTIN_TYPE(comptime_receiver) == C::T_OBJECT # If the receiver isn't a T_OBJECT, or uses a custom allocator, # then just write out the IV write as a function call. # too-complex shapes can't use index access, so we use rb_ivar_get for them too. if !receiver_t_object || shape_too_complex?(comptime_receiver) || ctx.chain_depth >= 10 asm.comment('call rb_vm_setinstancevariable') ic = jit.operand(1) # The function could raise exceptions. # Note that this modifies REG_SP, which is why we do it first jit_prepare_routine_call(jit, ctx, asm) # Get the operands from the stack val_opnd = ctx.stack_pop(1) # Call rb_vm_setinstancevariable(iseq, obj, id, val, ic); asm.mov(:rdi, jit.iseq.to_i) asm.mov(:rsi, [CFP, C.rb_control_frame_t.offsetof(:self)]) asm.mov(:rdx, ivar_name) asm.mov(:rcx, val_opnd) asm.mov(:r8, ic) asm.call(C.rb_vm_setinstancevariable) else # Get the iv index shape_id = C.rb_shape_get_shape_id(comptime_receiver) ivar_index = C.rb_shape_get_iv_index(shape_id, ivar_name) # Get the receiver asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) # Generate a side exit side_exit = side_exit(jit, ctx) # Upgrade type guard_object_is_heap(jit, ctx, asm, :rax, SelfOpnd, :setivar_not_heap) asm.comment('guard shape') asm.cmp(DwordPtr[:rax, C.rb_shape_id_offset], shape_id) megamorphic_side_exit = counted_exit(side_exit, :setivar_megamorphic) jit_chain_guard(:jne, jit, starting_context, asm, megamorphic_side_exit) # If we don't have an instance variable index, then we need to # transition out of the current shape. if ivar_index.nil? shape = C.rb_shape_get_shape_by_id(shape_id) current_capacity = shape.capacity dest_shape = C.rb_shape_get_next_no_warnings(shape, comptime_receiver, ivar_name) new_shape_id = C.rb_shape_id(dest_shape) if new_shape_id == C::OBJ_TOO_COMPLEX_SHAPE_ID asm.incr_counter(:setivar_too_complex) return CantCompile end ivar_index = shape.next_iv_index # If the new shape has a different capacity, we need to # reallocate the object. needs_extension = dest_shape.capacity != shape.capacity if needs_extension # Generate the C call so that runtime code will increase # the capacity and set the buffer. asm.mov(C_ARGS[0], :rax) asm.mov(C_ARGS[1], current_capacity) asm.mov(C_ARGS[2], dest_shape.capacity) asm.call(C.rb_ensure_iv_list_size) # Load the receiver again after the function call asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) end write_val = ctx.stack_pop(1) jit_write_iv(asm, comptime_receiver, :rax, :rcx, ivar_index, write_val, needs_extension) # Store the new shape asm.comment('write shape') asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) # reload after jit_write_iv asm.mov(DwordPtr[:rax, C.rb_shape_id_offset], new_shape_id) else # If the iv index already exists, then we don't need to # transition to a new shape. The reason is because we find # the iv index by searching up the shape tree. If we've # made the transition already, then there's no reason to # update the shape on the object. Just set the IV. write_val = ctx.stack_pop(1) jit_write_iv(asm, comptime_receiver, :rax, :rcx, ivar_index, write_val, false) end skip_wb = asm.new_label('skip_wb') # If the value we're writing is an immediate, we don't need to WB asm.test(write_val, C::RUBY_IMMEDIATE_MASK) asm.jnz(skip_wb) # If the value we're writing is nil or false, we don't need to WB asm.cmp(write_val, Qnil) asm.jbe(skip_wb) asm.comment('write barrier') asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:self)]) # reload after jit_write_iv asm.mov(C_ARGS[1], write_val) asm.call(C.rb_gc_writebarrier) asm.write_label(skip_wb) end KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def getclassvariable(jit, ctx, asm) # rb_vm_getclassvariable can raise exceptions. jit_prepare_routine_call(jit, ctx, asm) asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:iseq)]) asm.mov(C_ARGS[1], CFP) asm.mov(C_ARGS[2], jit.operand(0)) asm.mov(C_ARGS[3], jit.operand(1)) asm.call(C.rb_vm_getclassvariable) top = ctx.stack_push(Type::Unknown) asm.mov(top, C_RET) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def setclassvariable(jit, ctx, asm) # rb_vm_setclassvariable can raise exceptions. jit_prepare_routine_call(jit, ctx, asm) asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:iseq)]) asm.mov(C_ARGS[1], CFP) asm.mov(C_ARGS[2], jit.operand(0)) asm.mov(C_ARGS[3], ctx.stack_pop(1)) asm.mov(C_ARGS[4], jit.operand(1)) asm.call(C.rb_vm_setclassvariable) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_getconstant_path(jit, ctx, asm) # Cut the block for invalidation unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end ic = C.iseq_inline_constant_cache.new(jit.operand(0)) idlist = ic.segments # Make sure there is an exit for this block as the interpreter might want # to invalidate this block from rb_rjit_constant_ic_update(). # For now, we always take an entry exit even if it was a side exit. Invariants.ensure_block_entry_exit(jit, cause: 'opt_getconstant_path') # See vm_ic_hit_p(). The same conditions are checked in yjit_constant_ic_update(). ice = ic.entry if ice.nil? # In this case, leave a block that unconditionally side exits # for the interpreter to invalidate. asm.incr_counter(:optgetconst_not_cached) return CantCompile end if ice.ic_cref # with cref # Cache is keyed on a certain lexical scope. Use the interpreter's cache. side_exit = side_exit(jit, ctx) # Call function to verify the cache. It doesn't allocate or call methods. asm.mov(C_ARGS[0], ic.to_i) asm.mov(C_ARGS[1], [CFP, C.rb_control_frame_t.offsetof(:ep)]) asm.call(C.rb_vm_ic_hit_p) # Check the result. SysV only specifies one byte for _Bool return values, # so it's important we only check one bit to ignore the higher bits in the register. asm.test(C_RET, 1) asm.jz(counted_exit(side_exit, :optgetconst_cache_miss)) asm.mov(:rax, ic.to_i) # inline_cache asm.mov(:rax, [:rax, C.iseq_inline_constant_cache.offsetof(:entry)]) # ic_entry asm.mov(:rax, [:rax, C.iseq_inline_constant_cache_entry.offsetof(:value)]) # ic_entry_val # Push ic->entry->value stack_top = ctx.stack_push(Type::Unknown) asm.mov(stack_top, :rax) else # without cref # TODO: implement this # Optimize for single ractor mode. # if !assume_single_ractor_mode(jit, ocb) # return CantCompile # end # Invalidate output code on any constant writes associated with # constants referenced within the current block. Invariants.assume_stable_constant_names(jit, idlist) putobject(jit, ctx, asm, val: ice.value) end jump_to_next_insn(jit, ctx, asm) EndBlock end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def getconstant(jit, ctx, asm) id = jit.operand(0) # vm_get_ev_const can raise exceptions. jit_prepare_routine_call(jit, ctx, asm) allow_nil_opnd = ctx.stack_pop(1) klass_opnd = ctx.stack_pop(1) asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], klass_opnd) asm.mov(C_ARGS[2], id) asm.mov(C_ARGS[3], allow_nil_opnd) asm.call(C.rb_vm_get_ev_const) top = ctx.stack_push(Type::Unknown) asm.mov(top, C_RET) KeepCompiling end # setconstant # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def getglobal(jit, ctx, asm) gid = jit.operand(0) # Save the PC and SP because we might make a Ruby call for warning jit_prepare_routine_call(jit, ctx, asm) asm.mov(C_ARGS[0], gid) asm.call(C.rb_gvar_get) top = ctx.stack_push(Type::Unknown) asm.mov(top, C_RET) KeepCompiling end # setglobal # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def putnil(jit, ctx, asm) putobject(jit, ctx, asm, val: Qnil) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def putself(jit, ctx, asm) stack_top = ctx.stack_push_self asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) asm.mov(stack_top, :rax) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def putobject(jit, ctx, asm, val: jit.operand(0)) # Push it to the stack val_type = Type.from(C.to_ruby(val)) stack_top = ctx.stack_push(val_type) if asm.imm32?(val) asm.mov(stack_top, val) else # 64-bit immediates can't be directly written to memory asm.mov(:rax, val) asm.mov(stack_top, :rax) end KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def putspecialobject(jit, ctx, asm) object_type = jit.operand(0) if object_type == C::VM_SPECIAL_OBJECT_VMCORE stack_top = ctx.stack_push(Type::UnknownHeap) asm.mov(:rax, C.rb_mRubyVMFrozenCore) asm.mov(stack_top, :rax) KeepCompiling else # TODO: implement for VM_SPECIAL_OBJECT_CBASE and # VM_SPECIAL_OBJECT_CONST_BASE CantCompile end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def putstring(jit, ctx, asm) put_val = jit.operand(0, ruby: true) # Save the PC and SP because the callee will allocate jit_prepare_routine_call(jit, ctx, asm) asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], to_value(put_val)) asm.call(C.rb_ec_str_resurrect) stack_top = ctx.stack_push(Type::TString) asm.mov(stack_top, C_RET) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def concatstrings(jit, ctx, asm) n = jit.operand(0) # Save the PC and SP because we are allocating jit_prepare_routine_call(jit, ctx, asm) asm.lea(:rax, ctx.sp_opnd(-C.VALUE.size * n)) # call rb_str_concat_literals(size_t n, const VALUE *strings); asm.mov(C_ARGS[0], n) asm.mov(C_ARGS[1], :rax) asm.call(C.rb_str_concat_literals) ctx.stack_pop(n) stack_ret = ctx.stack_push(Type::TString) asm.mov(stack_ret, C_RET) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def anytostring(jit, ctx, asm) # Save the PC and SP since we might call #to_s jit_prepare_routine_call(jit, ctx, asm) str = ctx.stack_pop(1) val = ctx.stack_pop(1) asm.mov(C_ARGS[0], str) asm.mov(C_ARGS[1], val) asm.call(C.rb_obj_as_string_result) # Push the return value stack_ret = ctx.stack_push(Type::TString) asm.mov(stack_ret, C_RET) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def toregexp(jit, ctx, asm) opt = jit.operand(0, signed: true) cnt = jit.operand(1) # Save the PC and SP because this allocates an object and could # raise an exception. jit_prepare_routine_call(jit, ctx, asm) asm.lea(:rax, ctx.sp_opnd(-C.VALUE.size * cnt)) # values_ptr ctx.stack_pop(cnt) asm.mov(C_ARGS[0], 0) asm.mov(C_ARGS[1], cnt) asm.mov(C_ARGS[2], :rax) # values_ptr asm.call(C.rb_ary_tmp_new_from_values) # Save the array so we can clear it later asm.push(C_RET) asm.push(C_RET) # Alignment asm.mov(C_ARGS[0], C_RET) asm.mov(C_ARGS[1], opt) asm.call(C.rb_reg_new_ary) # The actual regex is in RAX now. Pop the temp array from # rb_ary_tmp_new_from_values into C arg regs so we can clear it asm.pop(:rcx) # Alignment asm.pop(:rcx) # ary # The value we want to push on the stack is in RAX right now stack_ret = ctx.stack_push(Type::UnknownHeap) asm.mov(stack_ret, C_RET) # Clear the temp array. asm.mov(C_ARGS[0], :rcx) # ary asm.call(C.rb_ary_clear) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def intern(jit, ctx, asm) # Save the PC and SP because we might allocate jit_prepare_routine_call(jit, ctx, asm); str = ctx.stack_pop(1) asm.mov(C_ARGS[0], str) asm.call(C.rb_str_intern) # Push the return value stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def newarray(jit, ctx, asm) n = jit.operand(0) # Save the PC and SP because we are allocating jit_prepare_routine_call(jit, ctx, asm) # If n is 0, then elts is never going to be read, so we can just pass null if n == 0 values_ptr = 0 else asm.comment('load pointer to array elts') offset_magnitude = C.VALUE.size * n values_opnd = ctx.sp_opnd(-(offset_magnitude)) asm.lea(:rax, values_opnd) values_ptr = :rax end # call rb_ec_ary_new_from_values(struct rb_execution_context_struct *ec, long n, const VALUE *elts); asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], n) asm.mov(C_ARGS[2], values_ptr) asm.call(C.rb_ec_ary_new_from_values) ctx.stack_pop(n) stack_ret = ctx.stack_push(Type::TArray) asm.mov(stack_ret, C_RET) KeepCompiling end # newarraykwsplat # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def duparray(jit, ctx, asm) ary = jit.operand(0) # Save the PC and SP because we are allocating jit_prepare_routine_call(jit, ctx, asm) # call rb_ary_resurrect(VALUE ary); asm.comment('call rb_ary_resurrect') asm.mov(C_ARGS[0], ary) asm.call(C.rb_ary_resurrect) stack_ret = ctx.stack_push(Type::TArray) asm.mov(stack_ret, C_RET) KeepCompiling end # duphash # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def expandarray(jit, ctx, asm) # Both arguments are rb_num_t which is unsigned num = jit.operand(0) flag = jit.operand(1) # If this instruction has the splat flag, then bail out. if flag & 0x01 != 0 asm.incr_counter(:expandarray_splat) return CantCompile end # If this instruction has the postarg flag, then bail out. if flag & 0x02 != 0 asm.incr_counter(:expandarray_postarg) return CantCompile end side_exit = side_exit(jit, ctx) array_opnd = ctx.stack_opnd(0) array_stack_opnd = StackOpnd[0] # num is the number of requested values. If there aren't enough in the # array then we're going to push on nils. if ctx.get_opnd_type(array_stack_opnd) == Type::Nil ctx.stack_pop(1) # pop after using the type info # special case for a, b = nil pattern # push N nils onto the stack num.times do push_opnd = ctx.stack_push(Type::Nil) asm.mov(push_opnd, Qnil) end return KeepCompiling end # Move the array from the stack and check that it's an array. asm.mov(:rax, array_opnd) guard_object_is_array(jit, ctx, asm, :rax, :rcx, array_stack_opnd, :expandarray_not_array) ctx.stack_pop(1) # pop after using the type info # If we don't actually want any values, then just return. if num == 0 return KeepCompiling end jit_array_len(asm, :rax, :rcx) # Only handle the case where the number of values in the array is greater # than or equal to the number of values requested. asm.cmp(:rcx, num) asm.jl(counted_exit(side_exit, :expandarray_rhs_too_small)) # Conditionally load the address of the heap array into REG1. # (struct RArray *)(obj)->as.heap.ptr #asm.mov(:rax, array_opnd) asm.mov(:rcx, [:rax, C.RBasic.offsetof(:flags)]) asm.test(:rcx, C::RARRAY_EMBED_FLAG); asm.mov(:rcx, [:rax, C.RArray.offsetof(:as, :heap, :ptr)]) # Load the address of the embedded array into REG1. # (struct RArray *)(obj)->as.ary asm.lea(:rax, [:rax, C.RArray.offsetof(:as, :ary)]) asm.cmovnz(:rcx, :rax) # Loop backward through the array and push each element onto the stack. (num - 1).downto(0).each do |i| top = ctx.stack_push(Type::Unknown) asm.mov(:rax, [:rcx, i * C.VALUE.size]) asm.mov(top, :rax) end KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def concatarray(jit, ctx, asm) # Save the PC and SP because the callee may allocate # Note that this modifies REG_SP, which is why we do it first jit_prepare_routine_call(jit, ctx, asm) # Get the operands from the stack ary2st_opnd = ctx.stack_pop(1) ary1_opnd = ctx.stack_pop(1) # Call rb_vm_concat_array(ary1, ary2st) asm.mov(C_ARGS[0], ary1_opnd) asm.mov(C_ARGS[1], ary2st_opnd) asm.call(C.rb_vm_concat_array) stack_ret = ctx.stack_push(Type::TArray) asm.mov(stack_ret, C_RET) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def splatarray(jit, ctx, asm) flag = jit.operand(0) # Save the PC and SP because the callee may allocate # Note that this modifies REG_SP, which is why we do it first jit_prepare_routine_call(jit, ctx, asm) # Get the operands from the stack ary_opnd = ctx.stack_pop(1) # Call rb_vm_splat_array(flag, ary) asm.mov(C_ARGS[0], flag) asm.mov(C_ARGS[1], ary_opnd) asm.call(C.rb_vm_splat_array) stack_ret = ctx.stack_push(Type::TArray) asm.mov(stack_ret, C_RET) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def newhash(jit, ctx, asm) num = jit.operand(0) # Save the PC and SP because we are allocating jit_prepare_routine_call(jit, ctx, asm) if num != 0 # val = rb_hash_new_with_size(num / 2); asm.mov(C_ARGS[0], num / 2) asm.call(C.rb_hash_new_with_size) # Save the allocated hash as we want to push it after insertion asm.push(C_RET) asm.push(C_RET) # x86 alignment # Get a pointer to the values to insert into the hash asm.lea(:rcx, ctx.stack_opnd(num - 1)) # rb_hash_bulk_insert(num, STACK_ADDR_FROM_TOP(num), val); asm.mov(C_ARGS[0], num) asm.mov(C_ARGS[1], :rcx) asm.mov(C_ARGS[2], C_RET) asm.call(C.rb_hash_bulk_insert) asm.pop(:rax) asm.pop(:rax) ctx.stack_pop(num) stack_ret = ctx.stack_push(Type::Hash) asm.mov(stack_ret, :rax) else # val = rb_hash_new(); asm.call(C.rb_hash_new) stack_ret = ctx.stack_push(Type::Hash) asm.mov(stack_ret, C_RET) end KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def newrange(jit, ctx, asm) flag = jit.operand(0) # rb_range_new() allocates and can raise jit_prepare_routine_call(jit, ctx, asm) # val = rb_range_new(low, high, (int)flag); asm.mov(C_ARGS[0], ctx.stack_opnd(1)) asm.mov(C_ARGS[1], ctx.stack_opnd(0)) asm.mov(C_ARGS[2], flag) asm.call(C.rb_range_new) ctx.stack_pop(2) stack_ret = ctx.stack_push(Type::UnknownHeap) asm.mov(stack_ret, C_RET) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def pop(jit, ctx, asm) ctx.stack_pop KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def dup(jit, ctx, asm) dup_val = ctx.stack_opnd(0) mapping, tmp_type = ctx.get_opnd_mapping(StackOpnd[0]) loc0 = ctx.stack_push_mapping([mapping, tmp_type]) asm.mov(:rax, dup_val) asm.mov(loc0, :rax) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def dupn(jit, ctx, asm) n = jit.operand(0) # In practice, seems to be only used for n==2 if n != 2 return CantCompile end opnd1 = ctx.stack_opnd(1) opnd0 = ctx.stack_opnd(0) mapping1 = ctx.get_opnd_mapping(StackOpnd[1]) mapping0 = ctx.get_opnd_mapping(StackOpnd[0]) dst1 = ctx.stack_push_mapping(mapping1) asm.mov(:rax, opnd1) asm.mov(dst1, :rax) dst0 = ctx.stack_push_mapping(mapping0) asm.mov(:rax, opnd0) asm.mov(dst0, :rax) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def swap(jit, ctx, asm) stack_swap(jit, ctx, asm, 0, 1) KeepCompiling end # opt_reverse # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def topn(jit, ctx, asm) n = jit.operand(0) top_n_val = ctx.stack_opnd(n) mapping = ctx.get_opnd_mapping(StackOpnd[n]) loc0 = ctx.stack_push_mapping(mapping) asm.mov(:rax, top_n_val) asm.mov(loc0, :rax) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def setn(jit, ctx, asm) n = jit.operand(0) top_val = ctx.stack_pop(0) dst_opnd = ctx.stack_opnd(n) asm.mov(:rax, top_val) asm.mov(dst_opnd, :rax) mapping = ctx.get_opnd_mapping(StackOpnd[0]) ctx.set_opnd_mapping(StackOpnd[n], mapping) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def adjuststack(jit, ctx, asm) n = jit.operand(0) ctx.stack_pop(n) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def defined(jit, ctx, asm) op_type = jit.operand(0) obj = jit.operand(1, ruby: true) pushval = jit.operand(2, ruby: true) # Save the PC and SP because the callee may allocate # Note that this modifies REG_SP, which is why we do it first jit_prepare_routine_call(jit, ctx, asm) # Get the operands from the stack v_opnd = ctx.stack_pop(1) # Call vm_defined(ec, reg_cfp, op_type, obj, v) asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], CFP) asm.mov(C_ARGS[2], op_type) asm.mov(C_ARGS[3], to_value(obj)) asm.mov(C_ARGS[4], v_opnd) asm.call(C.rb_vm_defined) asm.test(C_RET, 255) asm.mov(:rax, Qnil) asm.mov(:rcx, to_value(pushval)) asm.cmovnz(:rax, :rcx) # Push the return value onto the stack out_type = if C::SPECIAL_CONST_P(pushval) Type::UnknownImm else Type::Unknown end stack_ret = ctx.stack_push(out_type) asm.mov(stack_ret, :rax) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def definedivar(jit, ctx, asm) # Defer compilation so we can specialize base on a runtime receiver unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end ivar_name = jit.operand(0) # Value that will be pushed on the stack if the ivar is defined. In practice this is always the # string "instance-variable". If the ivar is not defined, nil will be pushed instead. pushval = jit.operand(2, ruby: true) # Get the receiver recv = :rcx asm.mov(recv, [CFP, C.rb_control_frame_t.offsetof(:self)]) # Specialize base on compile time values comptime_receiver = jit.peek_at_self if shape_too_complex?(comptime_receiver) # Fall back to calling rb_ivar_defined # Save the PC and SP because the callee may allocate # Note that this modifies REG_SP, which is why we do it first jit_prepare_routine_call(jit, ctx, asm) # clobbers :rax # Call rb_ivar_defined(recv, ivar_name) asm.mov(C_ARGS[0], recv) asm.mov(C_ARGS[1], ivar_name) asm.call(C.rb_ivar_defined) # if (rb_ivar_defined(recv, ivar_name)) { # val = pushval; # } asm.test(C_RET, 255) asm.mov(:rax, Qnil) asm.mov(:rcx, to_value(pushval)) asm.cmovnz(:rax, :rcx) # Push the return value onto the stack out_type = C::SPECIAL_CONST_P(pushval) ? Type::UnknownImm : Type::Unknown stack_ret = ctx.stack_push(out_type) asm.mov(stack_ret, :rax) return KeepCompiling end shape_id = C.rb_shape_get_shape_id(comptime_receiver) ivar_exists = C.rb_shape_get_iv_index(shape_id, ivar_name) side_exit = side_exit(jit, ctx) # Guard heap object (recv_opnd must be used before stack_pop) guard_object_is_heap(jit, ctx, asm, recv, SelfOpnd) shape_opnd = DwordPtr[recv, C.rb_shape_id_offset] asm.comment('guard shape') asm.cmp(shape_opnd, shape_id) jit_chain_guard(:jne, jit, ctx, asm, side_exit) result = ivar_exists ? C.to_value(pushval) : Qnil putobject(jit, ctx, asm, val: result) # Jump to next instruction. This allows guard chains to share the same successor. jump_to_next_insn(jit, ctx, asm) return EndBlock end # checkmatch # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def checkkeyword(jit, ctx, asm) # When a keyword is unspecified past index 32, a hash will be used # instead. This can only happen in iseqs taking more than 32 keywords. if jit.iseq.body.param.keyword.num >= 32 return CantCompile end # The EP offset to the undefined bits local bits_offset = jit.operand(0) # The index of the keyword we want to check index = jit.operand(1, signed: true) # Load environment pointer EP ep_reg = :rax jit_get_ep(asm, 0, reg: ep_reg) # VALUE kw_bits = *(ep - bits) bits_opnd = [ep_reg, C.VALUE.size * -bits_offset] # unsigned int b = (unsigned int)FIX2ULONG(kw_bits); # if ((b & (0x01 << idx))) { # # We can skip the FIX2ULONG conversion by shifting the bit we test bit_test = 0x01 << (index + 1) asm.test(bits_opnd, bit_test) asm.mov(:rax, Qfalse) asm.mov(:rcx, Qtrue) asm.cmovz(:rax, :rcx) stack_ret = ctx.stack_push(Type::UnknownImm) asm.mov(stack_ret, :rax) KeepCompiling end # checktype # defineclass # definemethod # definesmethod # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def send(jit, ctx, asm) # Specialize on a compile-time receiver, and split a block for chain guards unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end cd = C.rb_call_data.new(jit.operand(0)) blockiseq = jit.operand(1) # calling->ci mid = C.vm_ci_mid(cd.ci) calling = build_calling(ci: cd.ci, block_handler: blockiseq) # vm_sendish cme, comptime_recv_klass = jit_search_method(jit, ctx, asm, mid, calling) if cme == CantCompile return CantCompile end jit_call_general(jit, ctx, asm, mid, calling, cme, comptime_recv_klass) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_send_without_block(jit, ctx, asm, cd: C.rb_call_data.new(jit.operand(0))) # Specialize on a compile-time receiver, and split a block for chain guards unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end # calling->ci mid = C.vm_ci_mid(cd.ci) calling = build_calling(ci: cd.ci, block_handler: C::VM_BLOCK_HANDLER_NONE) # vm_sendish cme, comptime_recv_klass = jit_search_method(jit, ctx, asm, mid, calling) if cme == CantCompile return CantCompile end jit_call_general(jit, ctx, asm, mid, calling, cme, comptime_recv_klass) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def objtostring(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end recv = ctx.stack_opnd(0) comptime_recv = jit.peek_at_stack(0) if C.RB_TYPE_P(comptime_recv, C::RUBY_T_STRING) side_exit = side_exit(jit, ctx) jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv, StackOpnd[0], comptime_recv, side_exit) # No work needed. The string value is already on the top of the stack. KeepCompiling else cd = C.rb_call_data.new(jit.operand(0)) opt_send_without_block(jit, ctx, asm, cd:) end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_str_freeze(jit, ctx, asm) unless Invariants.assume_bop_not_redefined(jit, C::STRING_REDEFINED_OP_FLAG, C::BOP_FREEZE) return CantCompile; end str = jit.operand(0, ruby: true) # Push the return value onto the stack stack_ret = ctx.stack_push(Type::CString) asm.mov(:rax, to_value(str)) asm.mov(stack_ret, :rax) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_nil_p(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # opt_str_uminus # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_newarray_send(jit, ctx, asm) type = C.ID2SYM jit.operand(1) case type when :min then opt_newarray_min(jit, ctx, asm) when :max then opt_newarray_max(jit, ctx, asm) when :hash then opt_newarray_hash(jit, ctx, asm) else return CantCompile end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_newarray_min(jit, ctx, asm) num = jit.operand(0) # Save the PC and SP because we may allocate jit_prepare_routine_call(jit, ctx, asm) offset_magnitude = C.VALUE.size * num values_opnd = ctx.sp_opnd(-offset_magnitude) asm.lea(:rax, values_opnd) asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], num) asm.mov(C_ARGS[2], :rax) asm.call(C.rb_vm_opt_newarray_min) ctx.stack_pop(num) stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_newarray_max(jit, ctx, asm) num = jit.operand(0) # Save the PC and SP because we may allocate jit_prepare_routine_call(jit, ctx, asm) offset_magnitude = C.VALUE.size * num values_opnd = ctx.sp_opnd(-offset_magnitude) asm.lea(:rax, values_opnd) asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], num) asm.mov(C_ARGS[2], :rax) asm.call(C.rb_vm_opt_newarray_max) ctx.stack_pop(num) stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_newarray_hash(jit, ctx, asm) num = jit.operand(0) # Save the PC and SP because we may allocate jit_prepare_routine_call(jit, ctx, asm) offset_magnitude = C.VALUE.size * num values_opnd = ctx.sp_opnd(-offset_magnitude) asm.lea(:rax, values_opnd) asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], num) asm.mov(C_ARGS[2], :rax) asm.call(C.rb_vm_opt_newarray_hash) ctx.stack_pop(num) stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def invokesuper(jit, ctx, asm) cd = C.rb_call_data.new(jit.operand(0)) block = jit.operand(1) # Defer compilation so we can specialize on class of receiver unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end me = C.rb_vm_frame_method_entry(jit.cfp) if me.nil? return CantCompile end # FIXME: We should track and invalidate this block when this cme is invalidated current_defined_class = me.defined_class mid = me.def.original_id if me.to_i != C.rb_callable_method_entry(current_defined_class, me.called_id).to_i # Though we likely could generate this call, as we are only concerned # with the method entry remaining valid, assume_method_lookup_stable # below requires that the method lookup matches as well return CantCompile end # vm_search_normal_superclass rbasic_klass = C.to_ruby(C.RBasic.new(C.to_value(current_defined_class)).klass) if C::BUILTIN_TYPE(current_defined_class) == C::RUBY_T_ICLASS && C::BUILTIN_TYPE(rbasic_klass) == C::RUBY_T_MODULE && \ C::FL_TEST_RAW(rbasic_klass, C::RMODULE_IS_REFINEMENT) return CantCompile end comptime_superclass = C.rb_class_get_superclass(C.RCLASS_ORIGIN(current_defined_class)) ci = cd.ci argc = C.vm_ci_argc(ci) ci_flags = C.vm_ci_flag(ci) # Don't JIT calls that aren't simple # Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block. if ci_flags & C::VM_CALL_KWARG != 0 asm.incr_counter(:send_keywords) return CantCompile end if ci_flags & C::VM_CALL_KW_SPLAT != 0 asm.incr_counter(:send_kw_splat) return CantCompile end if ci_flags & C::VM_CALL_ARGS_BLOCKARG != 0 asm.incr_counter(:send_block_arg) return CantCompile end # Ensure we haven't rebound this method onto an incompatible class. # In the interpreter we try to avoid making this check by performing some # cheaper calculations first, but since we specialize on the method entry # and so only have to do this once at compile time this is fine to always # check and side exit. comptime_recv = jit.peek_at_stack(argc) unless C.obj_is_kind_of(comptime_recv, current_defined_class) return CantCompile end # Do method lookup cme = C.rb_callable_method_entry(comptime_superclass, mid) if cme.nil? return CantCompile end # Check that we'll be able to write this method dispatch before generating checks cme_def_type = cme.def.type if cme_def_type != C::VM_METHOD_TYPE_ISEQ && cme_def_type != C::VM_METHOD_TYPE_CFUNC # others unimplemented return CantCompile end asm.comment('guard known me') lep_opnd = :rax jit_get_lep(jit, asm, reg: lep_opnd) ep_me_opnd = [lep_opnd, C.VALUE.size * C::VM_ENV_DATA_INDEX_ME_CREF] asm.mov(:rcx, me.to_i) asm.cmp(ep_me_opnd, :rcx) asm.jne(counted_exit(side_exit(jit, ctx), :invokesuper_me_changed)) if block == C::VM_BLOCK_HANDLER_NONE # Guard no block passed # rb_vm_frame_block_handler(GET_EC()->cfp) == VM_BLOCK_HANDLER_NONE # note, we assume VM_ASSERT(VM_ENV_LOCAL_P(ep)) # # TODO: this could properly forward the current block handler, but # would require changes to gen_send_* asm.comment('guard no block given') ep_specval_opnd = [lep_opnd, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL] asm.cmp(ep_specval_opnd, C::VM_BLOCK_HANDLER_NONE) asm.jne(counted_exit(side_exit(jit, ctx), :invokesuper_block)) end # We need to assume that both our current method entry and the super # method entry we invoke remain stable Invariants.assume_method_lookup_stable(jit, me) Invariants.assume_method_lookup_stable(jit, cme) # Method calls may corrupt types ctx.clear_local_types calling = build_calling(ci:, block_handler: block) case cme_def_type in C::VM_METHOD_TYPE_ISEQ iseq = def_iseq_ptr(cme.def) frame_type = C::VM_FRAME_MAGIC_METHOD | C::VM_ENV_FLAG_LOCAL jit_call_iseq(jit, ctx, asm, cme, calling, iseq, frame_type:) in C::VM_METHOD_TYPE_CFUNC jit_call_cfunc(jit, ctx, asm, cme, calling) end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def invokeblock(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end # Get call info cd = C.rb_call_data.new(jit.operand(0)) calling = build_calling(ci: cd.ci, block_handler: :captured) # Get block_handler cfp = jit.cfp lep = C.rb_vm_ep_local_ep(cfp.ep) comptime_handler = lep[C::VM_ENV_DATA_INDEX_SPECVAL] # Handle each block_handler type if comptime_handler == C::VM_BLOCK_HANDLER_NONE # no block given asm.incr_counter(:invokeblock_none) CantCompile elsif comptime_handler & 0x3 == 0x1 # VM_BH_ISEQ_BLOCK_P asm.comment('get local EP') ep_reg = :rax jit_get_lep(jit, asm, reg: ep_reg) asm.mov(:rax, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler_opnd asm.comment('guard block_handler type') side_exit = side_exit(jit, ctx) asm.mov(:rcx, :rax) asm.and(:rcx, 0x3) # block_handler is a tagged pointer asm.cmp(:rcx, 0x1) # VM_BH_ISEQ_BLOCK_P tag_changed_exit = counted_exit(side_exit, :invokeblock_tag_changed) jit_chain_guard(:jne, jit, ctx, asm, tag_changed_exit) comptime_captured = C.rb_captured_block.new(comptime_handler & ~0x3) comptime_iseq = comptime_captured.code.iseq asm.comment('guard known ISEQ') asm.and(:rax, ~0x3) # captured asm.mov(:rax, [:rax, C.VALUE.size * 2]) # captured->iseq asm.mov(:rcx, comptime_iseq.to_i) asm.cmp(:rax, :rcx) block_changed_exit = counted_exit(side_exit, :invokeblock_iseq_block_changed) jit_chain_guard(:jne, jit, ctx, asm, block_changed_exit) jit_call_iseq(jit, ctx, asm, nil, calling, comptime_iseq, frame_type: C::VM_FRAME_MAGIC_BLOCK) elsif comptime_handler & 0x3 == 0x3 # VM_BH_IFUNC_P # We aren't handling CALLER_SETUP_ARG and CALLER_REMOVE_EMPTY_KW_SPLAT yet. if calling.flags & C::VM_CALL_ARGS_SPLAT != 0 asm.incr_counter(:invokeblock_ifunc_args_splat) return CantCompile end if calling.flags & C::VM_CALL_KW_SPLAT != 0 asm.incr_counter(:invokeblock_ifunc_kw_splat) return CantCompile end asm.comment('get local EP') jit_get_lep(jit, asm, reg: :rax) asm.mov(:rcx, [:rax, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler_opnd asm.comment('guard block_handler type'); side_exit = side_exit(jit, ctx) asm.mov(:rax, :rcx) # block_handler_opnd asm.and(:rax, 0x3) # tag_opnd: block_handler is a tagged pointer asm.cmp(:rax, 0x3) # VM_BH_IFUNC_P tag_changed_exit = counted_exit(side_exit, :invokeblock_tag_changed) jit_chain_guard(:jne, jit, ctx, asm, tag_changed_exit) # The cfunc may not be leaf jit_prepare_routine_call(jit, ctx, asm) # clobbers :rax asm.comment('call ifunc') asm.and(:rcx, ~0x3) # captured_opnd asm.lea(:rax, ctx.sp_opnd(-calling.argc * C.VALUE.size)) # argv asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], :rcx) # captured_opnd asm.mov(C_ARGS[2], calling.argc) asm.mov(C_ARGS[3], :rax) # argv asm.call(C.rb_vm_yield_with_cfunc) ctx.stack_pop(calling.argc) stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) # cfunc calls may corrupt types ctx.clear_local_types # Share the successor with other chains jump_to_next_insn(jit, ctx, asm) EndBlock elsif symbol?(comptime_handler) asm.incr_counter(:invokeblock_symbol) CantCompile else # Proc asm.incr_counter(:invokeblock_proc) CantCompile end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def leave(jit, ctx, asm) assert_equal(ctx.stack_size, 1) jit_check_ints(jit, ctx, asm) asm.comment('pop stack frame') asm.lea(:rax, [CFP, C.rb_control_frame_t.size]) asm.mov(CFP, :rax) asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], :rax) # Return a value (for compile_leave_exit) ret_opnd = ctx.stack_pop asm.mov(:rax, ret_opnd) # Set caller's SP and push a value to its stack (for JIT) asm.mov(SP, [CFP, C.rb_control_frame_t.offsetof(:sp)]) # Note: SP is in the position after popping a receiver and arguments asm.mov([SP], :rax) # Jump to cfp->jit_return asm.jmp([CFP, -C.rb_control_frame_t.size + C.rb_control_frame_t.offsetof(:jit_return)]) EndBlock end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def throw(jit, ctx, asm) throw_state = jit.operand(0) asm.mov(:rcx, ctx.stack_pop(1)) # throwobj # THROW_DATA_NEW allocates. Save SP for GC and PC for allocation tracing as # well as handling the catch table. However, not using jit_prepare_routine_call # since we don't need a patch point for this implementation. jit_save_pc(jit, asm) # clobbers rax jit_save_sp(ctx, asm) # rb_vm_throw verifies it's a valid throw, sets ec->tag->state, and returns throw # data, which is throwobj or a vm_throw_data wrapping it. When ec->tag->state is # set, JIT code callers will handle the throw with vm_exec_handle_exception. asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], CFP) asm.mov(C_ARGS[2], throw_state) # asm.mov(C_ARGS[3], :rcx) # same reg asm.call(C.rb_vm_throw) asm.comment('exit from throw') asm.pop(SP) asm.pop(EC) asm.pop(CFP) # return C_RET as C_RET asm.ret EndBlock end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jump(jit, ctx, asm) # Check for interrupts, but only on backward branches that may create loops jump_offset = jit.operand(0, signed: true) if jump_offset < 0 jit_check_ints(jit, ctx, asm) end pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset) jit_direct_jump(jit.iseq, pc, ctx, asm) EndBlock end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def branchif(jit, ctx, asm) # Check for interrupts, but only on backward branches that may create loops jump_offset = jit.operand(0, signed: true) if jump_offset < 0 jit_check_ints(jit, ctx, asm) end # Get the branch target instruction offsets next_pc = jit.pc + C.VALUE.size * jit.insn.len jump_pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset) val_type = ctx.get_opnd_type(StackOpnd[0]) val_opnd = ctx.stack_pop(1) if (result = val_type.known_truthy) != nil target_pc = result ? jump_pc : next_pc jit_direct_jump(jit.iseq, target_pc, ctx, asm) else # This `test` sets ZF only for Qnil and Qfalse, which let jz jump. asm.test(val_opnd, ~Qnil) # Set stubs branch_stub = BranchStub.new( iseq: jit.iseq, shape: Default, target0: BranchTarget.new(ctx:, pc: jump_pc), # branch target target1: BranchTarget.new(ctx:, pc: next_pc), # fallthrough ) branch_stub.target0.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true) @ocb.write(ocb_asm) end branch_stub.target1.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false) @ocb.write(ocb_asm) end # Jump to target0 on jnz branch_stub.compile = compile_branchif(branch_stub) branch_stub.compile.call(asm) end EndBlock end def compile_branchif(branch_stub) # Proc escapes arguments in memory proc do |branch_asm| branch_asm.comment("branchif #{branch_stub.shape}") branch_asm.stub(branch_stub) do case branch_stub.shape in Default branch_asm.jnz(branch_stub.target0.address) branch_asm.jmp(branch_stub.target1.address) in Next0 branch_asm.jz(branch_stub.target1.address) in Next1 branch_asm.jnz(branch_stub.target0.address) end end end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def branchunless(jit, ctx, asm) # Check for interrupts, but only on backward branches that may create loops jump_offset = jit.operand(0, signed: true) if jump_offset < 0 jit_check_ints(jit, ctx, asm) end # Get the branch target instruction offsets next_pc = jit.pc + C.VALUE.size * jit.insn.len jump_pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset) val_type = ctx.get_opnd_type(StackOpnd[0]) val_opnd = ctx.stack_pop(1) if (result = val_type.known_truthy) != nil target_pc = result ? next_pc : jump_pc jit_direct_jump(jit.iseq, target_pc, ctx, asm) else # This `test` sets ZF only for Qnil and Qfalse, which let jz jump. asm.test(val_opnd, ~Qnil) # Set stubs branch_stub = BranchStub.new( iseq: jit.iseq, shape: Default, target0: BranchTarget.new(ctx:, pc: jump_pc), # branch target target1: BranchTarget.new(ctx:, pc: next_pc), # fallthrough ) branch_stub.target0.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true) @ocb.write(ocb_asm) end branch_stub.target1.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false) @ocb.write(ocb_asm) end # Jump to target0 on jz branch_stub.compile = compile_branchunless(branch_stub) branch_stub.compile.call(asm) end EndBlock end def compile_branchunless(branch_stub) # Proc escapes arguments in memory proc do |branch_asm| branch_asm.comment("branchunless #{branch_stub.shape}") branch_asm.stub(branch_stub) do case branch_stub.shape in Default branch_asm.jz(branch_stub.target0.address) branch_asm.jmp(branch_stub.target1.address) in Next0 branch_asm.jnz(branch_stub.target1.address) in Next1 branch_asm.jz(branch_stub.target0.address) end end end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def branchnil(jit, ctx, asm) # Check for interrupts, but only on backward branches that may create loops jump_offset = jit.operand(0, signed: true) if jump_offset < 0 jit_check_ints(jit, ctx, asm) end # Get the branch target instruction offsets next_pc = jit.pc + C.VALUE.size * jit.insn.len jump_pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset) val_type = ctx.get_opnd_type(StackOpnd[0]) val_opnd = ctx.stack_pop(1) if (result = val_type.known_nil) != nil target_pc = result ? jump_pc : next_pc jit_direct_jump(jit.iseq, target_pc, ctx, asm) else asm.cmp(val_opnd, Qnil) # Set stubs branch_stub = BranchStub.new( iseq: jit.iseq, shape: Default, target0: BranchTarget.new(ctx:, pc: jump_pc), # branch target target1: BranchTarget.new(ctx:, pc: next_pc), # fallthrough ) branch_stub.target0.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true) @ocb.write(ocb_asm) end branch_stub.target1.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false) @ocb.write(ocb_asm) end # Jump to target0 on je branch_stub.compile = compile_branchnil(branch_stub) branch_stub.compile.call(asm) end EndBlock end def compile_branchnil(branch_stub) # Proc escapes arguments in memory proc do |branch_asm| branch_asm.comment("branchnil #{branch_stub.shape}") branch_asm.stub(branch_stub) do case branch_stub.shape in Default branch_asm.je(branch_stub.target0.address) branch_asm.jmp(branch_stub.target1.address) in Next0 branch_asm.jne(branch_stub.target1.address) in Next1 branch_asm.je(branch_stub.target0.address) end end end end # once # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_case_dispatch(jit, ctx, asm) # Normally this instruction would lookup the key in a hash and jump to an # offset based on that. # Instead we can take the fallback case and continue with the next # instruction. # We'd hope that our jitted code will be sufficiently fast without the # hash lookup, at least for small hashes, but it's worth revisiting this # assumption in the future. unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end starting_context = ctx.dup case_hash = jit.operand(0, ruby: true) else_offset = jit.operand(1) # Try to reorder case/else branches so that ones that are actually used come first. # Supporting only Fixnum for now so that the implementation can be an equality check. key_opnd = ctx.stack_pop(1) comptime_key = jit.peek_at_stack(0) # Check that all cases are fixnums to avoid having to register BOP assumptions on # all the types that case hashes support. This spends compile time to save memory. if fixnum?(comptime_key) && comptime_key <= 2**32 && C.rb_hash_keys(case_hash).all? { |key| fixnum?(key) } unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_EQQ) return CantCompile end # Check if the key is the same value asm.cmp(key_opnd, to_value(comptime_key)) side_exit = side_exit(jit, starting_context) jit_chain_guard(:jne, jit, starting_context, asm, side_exit) # Get the offset for the compile-time key offset = C.rb_hash_stlike_lookup(case_hash, comptime_key) # NOTE: If we hit the else branch with various values, it could negatively impact the performance. jump_offset = offset || else_offset # Jump to the offset of case or else target_pc = jit.pc + (jit.insn.len + jump_offset) * C.VALUE.size jit_direct_jump(jit.iseq, target_pc, ctx, asm) EndBlock else KeepCompiling # continue with === branches end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_plus(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end comptime_recv = jit.peek_at_stack(1) comptime_obj = jit.peek_at_stack(0) if fixnum?(comptime_recv) && fixnum?(comptime_obj) unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_PLUS) return CantCompile end # Check that both operands are fixnums guard_two_fixnums(jit, ctx, asm) obj_opnd = ctx.stack_pop recv_opnd = ctx.stack_pop asm.mov(:rax, recv_opnd) asm.sub(:rax, 1) # untag asm.mov(:rcx, obj_opnd) asm.add(:rax, :rcx) asm.jo(side_exit(jit, ctx)) dst_opnd = ctx.stack_push(Type::Fixnum) asm.mov(dst_opnd, :rax) KeepCompiling else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_minus(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end comptime_recv = jit.peek_at_stack(1) comptime_obj = jit.peek_at_stack(0) if fixnum?(comptime_recv) && fixnum?(comptime_obj) unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_MINUS) return CantCompile end # Check that both operands are fixnums guard_two_fixnums(jit, ctx, asm) obj_opnd = ctx.stack_pop recv_opnd = ctx.stack_pop asm.mov(:rax, recv_opnd) asm.mov(:rcx, obj_opnd) asm.sub(:rax, :rcx) asm.jo(side_exit(jit, ctx)) asm.add(:rax, 1) # re-tag dst_opnd = ctx.stack_push(Type::Fixnum) asm.mov(dst_opnd, :rax) KeepCompiling else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_mult(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_div(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_mod(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end if two_fixnums_on_stack?(jit) unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_MOD) return CantCompile end # Check that both operands are fixnums guard_two_fixnums(jit, ctx, asm) # Get the operands and destination from the stack arg1 = ctx.stack_pop(1) arg0 = ctx.stack_pop(1) # Check for arg0 % 0 asm.cmp(arg1, 0) asm.je(side_exit(jit, ctx)) # Call rb_fix_mod_fix(VALUE recv, VALUE obj) asm.mov(C_ARGS[0], arg0) asm.mov(C_ARGS[1], arg1) asm.call(C.rb_fix_mod_fix) # Push the return value onto the stack stack_ret = ctx.stack_push(Type::Fixnum) asm.mov(stack_ret, C_RET) KeepCompiling else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_eq(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end if jit_equality_specialized(jit, ctx, asm, true) jump_to_next_insn(jit, ctx, asm) EndBlock else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_neq(jit, ctx, asm) # opt_neq is passed two rb_call_data as arguments: # first for ==, second for != neq_cd = C.rb_call_data.new(jit.operand(1)) opt_send_without_block(jit, ctx, asm, cd: neq_cd) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_lt(jit, ctx, asm) jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovl, bop: C::BOP_LT) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_le(jit, ctx, asm) jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovle, bop: C::BOP_LE) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_gt(jit, ctx, asm) jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovg, bop: C::BOP_GT) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_ge(jit, ctx, asm) jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovge, bop: C::BOP_GE) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_ltlt(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_and(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end if two_fixnums_on_stack?(jit) unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_AND) return CantCompile end # Check that both operands are fixnums guard_two_fixnums(jit, ctx, asm) # Get the operands and destination from the stack arg1 = ctx.stack_pop(1) arg0 = ctx.stack_pop(1) asm.comment('bitwise and') asm.mov(:rax, arg0) asm.and(:rax, arg1) # Push the return value onto the stack dst = ctx.stack_push(Type::Fixnum) asm.mov(dst, :rax) KeepCompiling else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_or(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end if two_fixnums_on_stack?(jit) unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_OR) return CantCompile end # Check that both operands are fixnums guard_two_fixnums(jit, ctx, asm) # Get the operands and destination from the stack asm.comment('bitwise or') arg1 = ctx.stack_pop(1) arg0 = ctx.stack_pop(1) # Do the bitwise or arg0 | arg1 asm.mov(:rax, arg0) asm.or(:rax, arg1) # Push the return value onto the stack dst = ctx.stack_push(Type::Fixnum) asm.mov(dst, :rax) KeepCompiling else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_aref(jit, ctx, asm) cd = C.rb_call_data.new(jit.operand(0)) argc = C.vm_ci_argc(cd.ci) if argc != 1 asm.incr_counter(:optaref_argc_not_one) return CantCompile end unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end comptime_recv = jit.peek_at_stack(1) comptime_obj = jit.peek_at_stack(0) side_exit = side_exit(jit, ctx) if C.rb_class_of(comptime_recv) == Array && fixnum?(comptime_obj) unless Invariants.assume_bop_not_redefined(jit, C::ARRAY_REDEFINED_OP_FLAG, C::BOP_AREF) return CantCompile end idx_opnd = ctx.stack_opnd(0) recv_opnd = ctx.stack_opnd(1) not_array_exit = counted_exit(side_exit, :optaref_recv_not_array) jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv_opnd, StackOpnd[1], comptime_recv, not_array_exit) # Bail if idx is not a FIXNUM asm.mov(:rax, idx_opnd) asm.test(:rax, C::RUBY_FIXNUM_FLAG) asm.jz(counted_exit(side_exit, :optaref_arg_not_fixnum)) # Call VALUE rb_ary_entry_internal(VALUE ary, long offset). # It never raises or allocates, so we don't need to write to cfp->pc. asm.sar(:rax, 1) # Convert fixnum to int asm.mov(C_ARGS[0], recv_opnd) asm.mov(C_ARGS[1], :rax) asm.call(C.rb_ary_entry_internal) # Pop the argument and the receiver ctx.stack_pop(2) # Push the return value onto the stack stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) # Let guard chains share the same successor jump_to_next_insn(jit, ctx, asm) EndBlock elsif C.rb_class_of(comptime_recv) == Hash unless Invariants.assume_bop_not_redefined(jit, C::HASH_REDEFINED_OP_FLAG, C::BOP_AREF) return CantCompile end recv_opnd = ctx.stack_opnd(1) # Guard that the receiver is a Hash not_hash_exit = counted_exit(side_exit, :optaref_recv_not_hash) jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv_opnd, StackOpnd[1], comptime_recv, not_hash_exit) # Prepare to call rb_hash_aref(). It might call #hash on the key. jit_prepare_routine_call(jit, ctx, asm) asm.comment('call rb_hash_aref') key_opnd = ctx.stack_opnd(0) recv_opnd = ctx.stack_opnd(1) asm.mov(:rdi, recv_opnd) asm.mov(:rsi, key_opnd) asm.call(C.rb_hash_aref) # Pop the key and the receiver ctx.stack_pop(2) stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) # Let guard chains share the same successor jump_to_next_insn(jit, ctx, asm) EndBlock else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_aset(jit, ctx, asm) # Defer compilation so we can specialize on a runtime `self` unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end comptime_recv = jit.peek_at_stack(2) comptime_key = jit.peek_at_stack(1) # Get the operands from the stack recv = ctx.stack_opnd(2) key = ctx.stack_opnd(1) _val = ctx.stack_opnd(0) if C.rb_class_of(comptime_recv) == Array && fixnum?(comptime_key) side_exit = side_exit(jit, ctx) # Guard receiver is an Array jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv, StackOpnd[2], comptime_recv, side_exit) # Guard key is a fixnum jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_key), key, StackOpnd[1], comptime_key, side_exit) # We might allocate or raise jit_prepare_routine_call(jit, ctx, asm) asm.comment('call rb_ary_store') recv = ctx.stack_opnd(2) key = ctx.stack_opnd(1) val = ctx.stack_opnd(0) asm.mov(:rax, key) asm.sar(:rax, 1) # FIX2LONG(key) asm.mov(C_ARGS[0], recv) asm.mov(C_ARGS[1], :rax) asm.mov(C_ARGS[2], val) asm.call(C.rb_ary_store) # rb_ary_store returns void # stored value should still be on stack val = ctx.stack_opnd(0) # Push the return value onto the stack ctx.stack_pop(3) stack_ret = ctx.stack_push(Type::Unknown) asm.mov(:rax, val) asm.mov(stack_ret, :rax) jump_to_next_insn(jit, ctx, asm) EndBlock elsif C.rb_class_of(comptime_recv) == Hash side_exit = side_exit(jit, ctx) # Guard receiver is a Hash jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv, StackOpnd[2], comptime_recv, side_exit) # We might allocate or raise jit_prepare_routine_call(jit, ctx, asm) # Call rb_hash_aset recv = ctx.stack_opnd(2) key = ctx.stack_opnd(1) val = ctx.stack_opnd(0) asm.mov(C_ARGS[0], recv) asm.mov(C_ARGS[1], key) asm.mov(C_ARGS[2], val) asm.call(C.rb_hash_aset) # Push the return value onto the stack ctx.stack_pop(3) stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) jump_to_next_insn(jit, ctx, asm) EndBlock else opt_send_without_block(jit, ctx, asm) end end # opt_aset_with # opt_aref_with # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_length(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_size(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_empty_p(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_succ(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_not(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_regexpmatch2(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # invokebuiltin # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_invokebuiltin_delegate(jit, ctx, asm) bf = C.rb_builtin_function.new(jit.operand(0)) bf_argc = bf.argc start_index = jit.operand(1) # ec, self, and arguments if bf_argc + 2 > C_ARGS.size return CantCompile end # If the calls don't allocate, do they need up to date PC, SP? jit_prepare_routine_call(jit, ctx, asm) # Call the builtin func (ec, recv, arg1, arg2, ...) asm.comment('call builtin func') asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], [CFP, C.rb_control_frame_t.offsetof(:self)]) # Copy arguments from locals if bf_argc > 0 # Load environment pointer EP from CFP asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:ep)]) bf_argc.times do |i| table_size = jit.iseq.body.local_table_size offs = -table_size - C::VM_ENV_DATA_SIZE + 1 + start_index + i asm.mov(C_ARGS[2 + i], [:rax, offs * C.VALUE.size]) end end asm.call(bf.func_ptr) # Push the return value stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) KeepCompiling end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def opt_invokebuiltin_delegate_leave(jit, ctx, asm) opt_invokebuiltin_delegate(jit, ctx, asm) # opt_invokebuiltin_delegate is always followed by leave insn end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def putobject_INT2FIX_0_(jit, ctx, asm) putobject(jit, ctx, asm, val: C.to_value(0)) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def putobject_INT2FIX_1_(jit, ctx, asm) putobject(jit, ctx, asm, val: C.to_value(1)) end # # C func # # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_true(jit, ctx, asm, argc, _known_recv_class) return false if argc != 0 asm.comment('nil? == true') ctx.stack_pop(1) stack_ret = ctx.stack_push(Type::True) asm.mov(stack_ret, Qtrue) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_false(jit, ctx, asm, argc, _known_recv_class) return false if argc != 0 asm.comment('nil? == false') ctx.stack_pop(1) stack_ret = ctx.stack_push(Type::False) asm.mov(stack_ret, Qfalse) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_kernel_is_a(jit, ctx, asm, argc, known_recv_class) if argc != 1 return false end # If this is a super call we might not know the class if known_recv_class.nil? return false end # Important note: The output code will simply `return true/false`. # Correctness follows from: # - `known_recv_class` implies there is a guard scheduled before here # for a particular `CLASS_OF(lhs)`. # - We guard that rhs is identical to the compile-time sample # - In general, for any two Class instances A, B, `A < B` does not change at runtime. # Class#superclass is stable. sample_rhs = jit.peek_at_stack(0) sample_lhs = jit.peek_at_stack(1) # We are not allowing module here because the module hierarchy can change at runtime. if C.RB_TYPE_P(sample_rhs, C::RUBY_T_CLASS) return false end sample_is_a = C.obj_is_kind_of(sample_lhs, sample_rhs) side_exit = side_exit(jit, ctx) asm.comment('Kernel#is_a?') asm.mov(:rax, to_value(sample_rhs)) asm.cmp(ctx.stack_opnd(0), :rax) asm.jne(counted_exit(side_exit, :send_is_a_class_mismatch)) ctx.stack_pop(2) if sample_is_a stack_ret = ctx.stack_push(Type::True) asm.mov(stack_ret, Qtrue) else stack_ret = ctx.stack_push(Type::False) asm.mov(stack_ret, Qfalse) end return true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_kernel_instance_of(jit, ctx, asm, argc, known_recv_class) if argc != 1 return false end # If this is a super call we might not know the class if known_recv_class.nil? return false end # Important note: The output code will simply `return true/false`. # Correctness follows from: # - `known_recv_class` implies there is a guard scheduled before here # for a particular `CLASS_OF(lhs)`. # - We guard that rhs is identical to the compile-time sample # - For a particular `CLASS_OF(lhs)`, `rb_obj_class(lhs)` does not change. # (because for any singleton class `s`, `s.superclass.equal?(s.attached_object.class)`) sample_rhs = jit.peek_at_stack(0) sample_lhs = jit.peek_at_stack(1) # Filters out cases where the C implementation raises unless C.RB_TYPE_P(sample_rhs, C::RUBY_T_CLASS) || C.RB_TYPE_P(sample_rhs, C::RUBY_T_MODULE) return false end # We need to grab the class here to deal with singleton classes. # Instance of grabs the "real class" of the object rather than the # singleton class. sample_lhs_real_class = C.rb_obj_class(sample_lhs) sample_instance_of = (sample_lhs_real_class == sample_rhs) side_exit = side_exit(jit, ctx) asm.comment('Kernel#instance_of?') asm.mov(:rax, to_value(sample_rhs)) asm.cmp(ctx.stack_opnd(0), :rax) asm.jne(counted_exit(side_exit, :send_instance_of_class_mismatch)) ctx.stack_pop(2) if sample_instance_of stack_ret = ctx.stack_push(Type::True) asm.mov(stack_ret, Qtrue) else stack_ret = ctx.stack_push(Type::False) asm.mov(stack_ret, Qfalse) end return true; end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_obj_not(jit, ctx, asm, argc, _known_recv_class) return false if argc != 0 recv_type = ctx.get_opnd_type(StackOpnd[0]) case recv_type.known_truthy in false asm.comment('rb_obj_not(nil_or_false)') ctx.stack_pop(1) out_opnd = ctx.stack_push(Type::True) asm.mov(out_opnd, Qtrue) in true # Note: recv_type != Type::Nil && recv_type != Type::False. asm.comment('rb_obj_not(truthy)') ctx.stack_pop(1) out_opnd = ctx.stack_push(Type::False) asm.mov(out_opnd, Qfalse) in nil asm.comment('rb_obj_not') recv = ctx.stack_pop # This `test` sets ZF only for Qnil and Qfalse, which let cmovz set. asm.test(recv, ~Qnil) asm.mov(:rax, Qfalse) asm.mov(:rcx, Qtrue) asm.cmovz(:rax, :rcx) stack_ret = ctx.stack_push(Type::UnknownImm) asm.mov(stack_ret, :rax) end true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_obj_equal(jit, ctx, asm, argc, _known_recv_class) return false if argc != 1 asm.comment('equal?') obj1 = ctx.stack_pop(1) obj2 = ctx.stack_pop(1) asm.mov(:rax, obj1) asm.mov(:rcx, obj2) asm.cmp(:rax, :rcx) asm.mov(:rax, Qfalse) asm.mov(:rcx, Qtrue) asm.cmove(:rax, :rcx) stack_ret = ctx.stack_push(Type::UnknownImm) asm.mov(stack_ret, :rax) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_obj_not_equal(jit, ctx, asm, argc, _known_recv_class) return false if argc != 1 jit_equality_specialized(jit, ctx, asm, false) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_mod_eqq(jit, ctx, asm, argc, _known_recv_class) return false if argc != 1 asm.comment('Module#===') # By being here, we know that the receiver is a T_MODULE or a T_CLASS, because Module#=== can # only live on these objects. With that, we can call rb_obj_is_kind_of() without # jit_prepare_routine_call() or a control frame push because it can't raise, allocate, or call # Ruby methods with these inputs. # Note the difference in approach from Kernel#is_a? because we don't get a free guard for the # right hand side. lhs = ctx.stack_opnd(1) # the module rhs = ctx.stack_opnd(0) asm.mov(C_ARGS[0], rhs); asm.mov(C_ARGS[1], lhs); asm.call(C.rb_obj_is_kind_of) # Return the result ctx.stack_pop(2) stack_ret = ctx.stack_push(Type::UnknownImm) asm.mov(stack_ret, C_RET) return true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_int_equal(jit, ctx, asm, argc, _known_recv_class) return false if argc != 1 return false unless two_fixnums_on_stack?(jit) guard_two_fixnums(jit, ctx, asm) # Compare the arguments asm.comment('rb_int_equal') arg1 = ctx.stack_pop(1) arg0 = ctx.stack_pop(1) asm.mov(:rax, arg1) asm.cmp(arg0, :rax) asm.mov(:rax, Qfalse) asm.mov(:rcx, Qtrue) asm.cmove(:rax, :rcx) stack_ret = ctx.stack_push(Type::UnknownImm) asm.mov(stack_ret, :rax) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_int_mul(jit, ctx, asm, argc, _known_recv_class) return false if argc != 1 return false unless two_fixnums_on_stack?(jit) guard_two_fixnums(jit, ctx, asm) asm.comment('rb_int_mul') y_opnd = ctx.stack_pop x_opnd = ctx.stack_pop asm.mov(C_ARGS[0], x_opnd) asm.mov(C_ARGS[1], y_opnd) asm.call(C.rb_fix_mul_fix) ret_opnd = ctx.stack_push(Type::Unknown) asm.mov(ret_opnd, C_RET) true end def jit_rb_int_div(jit, ctx, asm, argc, _known_recv_class) return false if argc != 1 return false unless two_fixnums_on_stack?(jit) guard_two_fixnums(jit, ctx, asm) asm.comment('rb_int_div') y_opnd = ctx.stack_pop x_opnd = ctx.stack_pop asm.mov(:rax, y_opnd) asm.cmp(:rax, C.to_value(0)) asm.je(side_exit(jit, ctx)) asm.mov(C_ARGS[0], x_opnd) asm.mov(C_ARGS[1], :rax) asm.call(C.rb_fix_div_fix) ret_opnd = ctx.stack_push(Type::Unknown) asm.mov(ret_opnd, C_RET) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_int_aref(jit, ctx, asm, argc, _known_recv_class) return false if argc != 1 return false unless two_fixnums_on_stack?(jit) guard_two_fixnums(jit, ctx, asm) asm.comment('rb_int_aref') y_opnd = ctx.stack_pop x_opnd = ctx.stack_pop asm.mov(C_ARGS[0], x_opnd) asm.mov(C_ARGS[1], y_opnd) asm.call(C.rb_fix_aref) ret_opnd = ctx.stack_push(Type::UnknownImm) asm.mov(ret_opnd, C_RET) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_str_empty_p(jit, ctx, asm, argc, known_recv_class) recv_opnd = ctx.stack_pop(1) out_opnd = ctx.stack_push(Type::UnknownImm) asm.comment('get string length') asm.mov(:rax, recv_opnd) str_len_opnd = [:rax, C.RString.offsetof(:len)] asm.cmp(str_len_opnd, 0) asm.mov(:rax, Qfalse) asm.mov(:rcx, Qtrue) asm.cmove(:rax, :rcx) asm.mov(out_opnd, :rax) return true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_str_to_s(jit, ctx, asm, argc, known_recv_class) return false if argc != 0 if known_recv_class == String asm.comment('to_s on plain string') # The method returns the receiver, which is already on the stack. # No stack movement. return true end false end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_str_bytesize(jit, ctx, asm, argc, known_recv_class) asm.comment('String#bytesize') recv = ctx.stack_pop(1) asm.mov(C_ARGS[0], recv) asm.call(C.rb_str_bytesize) out_opnd = ctx.stack_push(Type::Fixnum) asm.mov(out_opnd, C_RET) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_str_concat(jit, ctx, asm, argc, known_recv_class) # The << operator can accept integer codepoints for characters # as the argument. We only specially optimise string arguments. # If the peeked-at compile time argument is something other than # a string, assume it won't be a string later either. comptime_arg = jit.peek_at_stack(0) unless C.RB_TYPE_P(comptime_arg, C::RUBY_T_STRING) return false end # Guard that the concat argument is a string asm.mov(:rax, ctx.stack_opnd(0)) guard_object_is_string(jit, ctx, asm, :rax, :rcx, StackOpnd[0]) # Guard buffers from GC since rb_str_buf_append may allocate. During the VM lock on GC, # other Ractors may trigger global invalidation, so we need ctx.clear_local_types. # PC is used on errors like Encoding::CompatibilityError raised by rb_str_buf_append. jit_prepare_routine_call(jit, ctx, asm) concat_arg = ctx.stack_pop(1) recv = ctx.stack_pop(1) # Test if string encodings differ. If different, use rb_str_append. If the same, # use rb_yjit_str_simple_append, which calls rb_str_cat. asm.comment('<< on strings') # Take receiver's object flags XOR arg's flags. If any # string-encoding flags are different between the two, # the encodings don't match. recv_reg = :rax asm.mov(recv_reg, recv) concat_arg_reg = :rcx asm.mov(concat_arg_reg, concat_arg) asm.mov(recv_reg, [recv_reg, C.RBasic.offsetof(:flags)]) asm.mov(concat_arg_reg, [concat_arg_reg, C.RBasic.offsetof(:flags)]) asm.xor(recv_reg, concat_arg_reg) asm.test(recv_reg, C::RUBY_ENCODING_MASK) # Push once, use the resulting operand in both branches below. stack_ret = ctx.stack_push(Type::TString) enc_mismatch = asm.new_label('enc_mismatch') asm.jnz(enc_mismatch) # If encodings match, call the simple append function and jump to return asm.mov(C_ARGS[0], recv) asm.mov(C_ARGS[1], concat_arg) asm.call(C.rjit_str_simple_append) ret_label = asm.new_label('func_return') asm.mov(stack_ret, C_RET) asm.jmp(ret_label) # If encodings are different, use a slower encoding-aware concatenate asm.write_label(enc_mismatch) asm.mov(C_ARGS[0], recv) asm.mov(C_ARGS[1], concat_arg) asm.call(C.rb_str_buf_append) asm.mov(stack_ret, C_RET) # Drop through to return asm.write_label(ret_label) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_str_uplus(jit, ctx, asm, argc, _known_recv_class) if argc != 0 return false end # We allocate when we dup the string jit_prepare_routine_call(jit, ctx, asm) asm.comment('Unary plus on string') asm.mov(:rax, ctx.stack_pop(1)) # recv_opnd asm.mov(:rcx, [:rax, C.RBasic.offsetof(:flags)]) # flags_opnd asm.test(:rcx, C::RUBY_FL_FREEZE) ret_label = asm.new_label('stack_ret') # String#+@ can only exist on T_STRING stack_ret = ctx.stack_push(Type::TString) # If the string isn't frozen, we just return it. asm.mov(stack_ret, :rax) # recv_opnd asm.jz(ret_label) # Str is frozen - duplicate it asm.mov(C_ARGS[0], :rax) # recv_opnd asm.call(C.rb_str_dup) asm.mov(stack_ret, C_RET) asm.write_label(ret_label) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_str_getbyte(jit, ctx, asm, argc, _known_recv_class) return false if argc != 1 asm.comment('rb_str_getbyte') index_opnd = ctx.stack_pop str_opnd = ctx.stack_pop asm.mov(C_ARGS[0], str_opnd) asm.mov(C_ARGS[1], index_opnd) asm.call(C.rb_str_getbyte) ret_opnd = ctx.stack_push(Type::Fixnum) asm.mov(ret_opnd, C_RET) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_ary_empty_p(jit, ctx, asm, argc, _known_recv_class) array_reg = :rax asm.mov(array_reg, ctx.stack_pop(1)) jit_array_len(asm, array_reg, :rcx) asm.test(:rcx, :rcx) asm.mov(:rax, Qfalse) asm.mov(:rcx, Qtrue) asm.cmovz(:rax, :rcx) out_opnd = ctx.stack_push(Type::UnknownImm) asm.mov(out_opnd, :rax) return true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_ary_push(jit, ctx, asm, argc, _known_recv_class) return false if argc != 1 asm.comment('rb_ary_push') jit_prepare_routine_call(jit, ctx, asm) item_opnd = ctx.stack_pop ary_opnd = ctx.stack_pop asm.mov(C_ARGS[0], ary_opnd) asm.mov(C_ARGS[1], item_opnd) asm.call(C.rb_ary_push) ret_opnd = ctx.stack_push(Type::TArray) asm.mov(ret_opnd, C_RET) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_obj_respond_to(jit, ctx, asm, argc, known_recv_class) # respond_to(:sym) or respond_to(:sym, true) if argc != 1 && argc != 2 return false end if known_recv_class.nil? return false end recv_class = known_recv_class # Get the method_id from compile time. We will later add a guard against it. mid_sym = jit.peek_at_stack(argc - 1) unless static_symbol?(mid_sym) return false end mid = C.rb_sym2id(mid_sym) # This represents the value of the "include_all" argument and whether it's known allow_priv = if argc == 1 # Default is false false else # Get value from type information (may or may not be known) ctx.get_opnd_type(StackOpnd[0]).known_truthy end target_cme = C.rb_callable_method_entry_or_negative(recv_class, mid) # Should never be null, as in that case we will be returned a "negative CME" assert_equal(false, target_cme.nil?) cme_def_type = C.UNDEFINED_METHOD_ENTRY_P(target_cme) ? C::VM_METHOD_TYPE_UNDEF : target_cme.def.type if cme_def_type == C::VM_METHOD_TYPE_REFINED return false end visibility = if cme_def_type == C::VM_METHOD_TYPE_UNDEF C::METHOD_VISI_UNDEF else C.METHOD_ENTRY_VISI(target_cme) end result = case [visibility, allow_priv] in C::METHOD_VISI_UNDEF, _ then Qfalse # No method => false in C::METHOD_VISI_PUBLIC, _ then Qtrue # Public method => true regardless of include_all in _, true then Qtrue # include_all => always true else return false # not public and include_all not known, can't compile end if result != Qtrue # Only if respond_to_missing? hasn't been overridden # In the future, we might want to jit the call to respond_to_missing? unless Invariants.assume_method_basic_definition(jit, recv_class, C.idRespond_to_missing) return false end end # Invalidate this block if method lookup changes for the method being queried. This works # both for the case where a method does or does not exist, as for the latter we asked for a # "negative CME" earlier. Invariants.assume_method_lookup_stable(jit, target_cme) # Generate a side exit side_exit = side_exit(jit, ctx) if argc == 2 # pop include_all argument (we only use its type info) ctx.stack_pop(1) end sym_opnd = ctx.stack_pop(1) _recv_opnd = ctx.stack_pop(1) # This is necessary because we have no guarantee that sym_opnd is a constant asm.comment('guard known mid') asm.mov(:rax, to_value(mid_sym)) asm.cmp(sym_opnd, :rax) asm.jne(side_exit) putobject(jit, ctx, asm, val: result) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_rb_f_block_given_p(jit, ctx, asm, argc, _known_recv_class) asm.comment('block_given?') # Same as rb_vm_frame_block_handler jit_get_lep(jit, asm, reg: :rax) asm.mov(:rax, [:rax, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler ctx.stack_pop(1) out_opnd = ctx.stack_push(Type::UnknownImm) # Return `block_handler != VM_BLOCK_HANDLER_NONE` asm.cmp(:rax, C::VM_BLOCK_HANDLER_NONE) asm.mov(:rax, Qfalse) asm.mov(:rcx, Qtrue) asm.cmovne(:rax, :rcx) # block_given asm.mov(out_opnd, :rax) true end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_thread_s_current(jit, ctx, asm, argc, _known_recv_class) return false if argc != 0 asm.comment('Thread.current') ctx.stack_pop(1) # ec->thread_ptr asm.mov(:rax, [EC, C.rb_execution_context_t.offsetof(:thread_ptr)]) # thread->self asm.mov(:rax, [:rax, C.rb_thread_struct.offsetof(:self)]) stack_ret = ctx.stack_push(Type::UnknownHeap) asm.mov(stack_ret, :rax) true end # # Helpers # def register_cfunc_codegen_funcs # Specialization for C methods. See register_cfunc_method for details. register_cfunc_method(BasicObject, :!, :jit_rb_obj_not) register_cfunc_method(NilClass, :nil?, :jit_rb_true) register_cfunc_method(Kernel, :nil?, :jit_rb_false) register_cfunc_method(Kernel, :is_a?, :jit_rb_kernel_is_a) register_cfunc_method(Kernel, :kind_of?, :jit_rb_kernel_is_a) register_cfunc_method(Kernel, :instance_of?, :jit_rb_kernel_instance_of) register_cfunc_method(BasicObject, :==, :jit_rb_obj_equal) register_cfunc_method(BasicObject, :equal?, :jit_rb_obj_equal) register_cfunc_method(BasicObject, :!=, :jit_rb_obj_not_equal) register_cfunc_method(Kernel, :eql?, :jit_rb_obj_equal) register_cfunc_method(Module, :==, :jit_rb_obj_equal) register_cfunc_method(Module, :===, :jit_rb_mod_eqq) register_cfunc_method(Symbol, :==, :jit_rb_obj_equal) register_cfunc_method(Symbol, :===, :jit_rb_obj_equal) register_cfunc_method(Integer, :==, :jit_rb_int_equal) register_cfunc_method(Integer, :===, :jit_rb_int_equal) # rb_str_to_s() methods in string.c register_cfunc_method(String, :empty?, :jit_rb_str_empty_p) register_cfunc_method(String, :to_s, :jit_rb_str_to_s) register_cfunc_method(String, :to_str, :jit_rb_str_to_s) register_cfunc_method(String, :bytesize, :jit_rb_str_bytesize) register_cfunc_method(String, :<<, :jit_rb_str_concat) register_cfunc_method(String, :+@, :jit_rb_str_uplus) # rb_ary_empty_p() method in array.c register_cfunc_method(Array, :empty?, :jit_rb_ary_empty_p) register_cfunc_method(Kernel, :respond_to?, :jit_obj_respond_to) register_cfunc_method(Kernel, :block_given?, :jit_rb_f_block_given_p) # Thread.current register_cfunc_method(C.rb_singleton_class(Thread), :current, :jit_thread_s_current) #--- register_cfunc_method(Array, :<<, :jit_rb_ary_push) register_cfunc_method(Integer, :*, :jit_rb_int_mul) register_cfunc_method(Integer, :/, :jit_rb_int_div) register_cfunc_method(Integer, :[], :jit_rb_int_aref) register_cfunc_method(String, :getbyte, :jit_rb_str_getbyte) end def register_cfunc_method(klass, mid_sym, func) mid = C.rb_intern(mid_sym.to_s) me = C.rb_method_entry_at(klass, mid) assert_equal(false, me.nil?) # Only cfuncs are supported method_serial = me.def.method_serial @cfunc_codegen_table[method_serial] = method(func) end def lookup_cfunc_codegen(cme_def) @cfunc_codegen_table[cme_def.method_serial] end def stack_swap(_jit, ctx, asm, offset0, offset1) stack0_mem = ctx.stack_opnd(offset0) stack1_mem = ctx.stack_opnd(offset1) mapping0 = ctx.get_opnd_mapping(StackOpnd[offset0]) mapping1 = ctx.get_opnd_mapping(StackOpnd[offset1]) asm.mov(:rax, stack0_mem) asm.mov(:rcx, stack1_mem) asm.mov(stack0_mem, :rcx) asm.mov(stack1_mem, :rax) ctx.set_opnd_mapping(StackOpnd[offset0], mapping1) ctx.set_opnd_mapping(StackOpnd[offset1], mapping0) end def jit_getlocal_generic(jit, ctx, asm, idx:, level:) # Load environment pointer EP (level 0) from CFP ep_reg = :rax jit_get_ep(asm, level, reg: ep_reg) # Load the local from the block # val = *(vm_get_ep(GET_EP(), level) - idx); asm.mov(:rax, [ep_reg, -idx * C.VALUE.size]) # Write the local at SP stack_top = if level == 0 local_idx = ep_offset_to_local_idx(jit.iseq, idx) ctx.stack_push_local(local_idx) else ctx.stack_push(Type::Unknown) end asm.mov(stack_top, :rax) KeepCompiling end def jit_setlocal_generic(jit, ctx, asm, idx:, level:) value_type = ctx.get_opnd_type(StackOpnd[0]) # Load environment pointer EP at level ep_reg = :rax jit_get_ep(asm, level, reg: ep_reg) # Write barriers may be required when VM_ENV_FLAG_WB_REQUIRED is set, however write barriers # only affect heap objects being written. If we know an immediate value is being written we # can skip this check. unless value_type.imm? # flags & VM_ENV_FLAG_WB_REQUIRED flags_opnd = [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS] asm.test(flags_opnd, C::VM_ENV_FLAG_WB_REQUIRED) # if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0 asm.jnz(side_exit(jit, ctx)) end if level == 0 local_idx = ep_offset_to_local_idx(jit.iseq, idx) ctx.set_local_type(local_idx, value_type) end # Pop the value to write from the stack stack_top = ctx.stack_pop(1) # Write the value at the environment pointer asm.mov(:rcx, stack_top) asm.mov([ep_reg, -(C.VALUE.size * idx)], :rcx) KeepCompiling end # Compute the index of a local variable from its slot index def ep_offset_to_local_idx(iseq, ep_offset) # Layout illustration # This is an array of VALUE # | VM_ENV_DATA_SIZE | # v v # low addr <+-------+-------+-------+-------+------------------+ # |local 0|local 1| ... |local n| .... | # +-------+-------+-------+-------+------------------+ # ^ ^ ^ ^ # +-------+---local_table_size----+ cfp->ep--+ # | | # +------------------ep_offset---------------+ # # See usages of local_var_name() from iseq.c for similar calculation. # Equivalent of iseq->body->local_table_size local_table_size = iseq.body.local_table_size op = ep_offset - C::VM_ENV_DATA_SIZE local_idx = local_table_size - op - 1 assert_equal(true, local_idx >= 0 && local_idx < local_table_size) local_idx end # Compute the index of a local variable from its slot index def slot_to_local_idx(iseq, slot_idx) # Layout illustration # This is an array of VALUE # | VM_ENV_DATA_SIZE | # v v # low addr <+-------+-------+-------+-------+------------------+ # |local 0|local 1| ... |local n| .... | # +-------+-------+-------+-------+------------------+ # ^ ^ ^ ^ # +-------+---local_table_size----+ cfp->ep--+ # | | # +------------------slot_idx----------------+ # # See usages of local_var_name() from iseq.c for similar calculation. local_table_size = iseq.body.local_table_size op = slot_idx - C::VM_ENV_DATA_SIZE local_table_size - op - 1 end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def guard_object_is_heap(jit, ctx, asm, object, object_opnd, counter = nil) object_type = ctx.get_opnd_type(object_opnd) if object_type.heap? return end side_exit = side_exit(jit, ctx) side_exit = counted_exit(side_exit, counter) if counter asm.comment('guard object is heap') # Test that the object is not an immediate asm.test(object, C::RUBY_IMMEDIATE_MASK) asm.jnz(side_exit) # Test that the object is not false asm.cmp(object, Qfalse) asm.je(side_exit) if object_type.diff(Type::UnknownHeap) != TypeDiff::Incompatible ctx.upgrade_opnd_type(object_opnd, Type::UnknownHeap) end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def guard_object_is_array(jit, ctx, asm, object_reg, flags_reg, object_opnd, counter = nil) object_type = ctx.get_opnd_type(object_opnd) if object_type.array? return end guard_object_is_heap(jit, ctx, asm, object_reg, object_opnd, counter) side_exit = side_exit(jit, ctx) side_exit = counted_exit(side_exit, counter) if counter asm.comment('guard object is array') # Pull out the type mask asm.mov(flags_reg, [object_reg, C.RBasic.offsetof(:flags)]) asm.and(flags_reg, C::RUBY_T_MASK) # Compare the result with T_ARRAY asm.cmp(flags_reg, C::RUBY_T_ARRAY) asm.jne(side_exit) if object_type.diff(Type::TArray) != TypeDiff::Incompatible ctx.upgrade_opnd_type(object_opnd, Type::TArray) end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def guard_object_is_string(jit, ctx, asm, object_reg, flags_reg, object_opnd, counter = nil) object_type = ctx.get_opnd_type(object_opnd) if object_type.string? return end guard_object_is_heap(jit, ctx, asm, object_reg, object_opnd, counter) side_exit = side_exit(jit, ctx) side_exit = counted_exit(side_exit, counter) if counter asm.comment('guard object is string') # Pull out the type mask asm.mov(flags_reg, [object_reg, C.RBasic.offsetof(:flags)]) asm.and(flags_reg, C::RUBY_T_MASK) # Compare the result with T_STRING asm.cmp(flags_reg, C::RUBY_T_STRING) asm.jne(side_exit) if object_type.diff(Type::TString) != TypeDiff::Incompatible ctx.upgrade_opnd_type(object_opnd, Type::TString) end end # clobbers object_reg def guard_object_is_not_ruby2_keyword_hash(asm, object_reg, flags_reg, side_exit) asm.comment('guard object is not ruby2 keyword hash') not_ruby2_keyword = asm.new_label('not_ruby2_keyword') asm.test(object_reg, C::RUBY_IMMEDIATE_MASK) asm.jnz(not_ruby2_keyword) asm.cmp(object_reg, Qfalse) asm.je(not_ruby2_keyword) asm.mov(flags_reg, [object_reg, C.RBasic.offsetof(:flags)]) type_reg = object_reg asm.mov(type_reg, flags_reg) asm.and(type_reg, C::RUBY_T_MASK) asm.cmp(type_reg, C::RUBY_T_HASH) asm.jne(not_ruby2_keyword) asm.test(flags_reg, C::RHASH_PASS_AS_KEYWORDS) asm.jnz(side_exit) asm.write_label(not_ruby2_keyword) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_chain_guard(opcode, jit, ctx, asm, side_exit, limit: 20) opcode => :je | :jne | :jnz | :jz if ctx.chain_depth < limit deeper = ctx.dup deeper.chain_depth += 1 branch_stub = BranchStub.new( iseq: jit.iseq, shape: Default, target0: BranchTarget.new(ctx: deeper, pc: jit.pc), ) branch_stub.target0.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(deeper, ocb_asm, branch_stub, true) @ocb.write(ocb_asm) end branch_stub.compile = compile_jit_chain_guard(branch_stub, opcode:) branch_stub.compile.call(asm) else asm.public_send(opcode, side_exit) end end def compile_jit_chain_guard(branch_stub, opcode:) # Proc escapes arguments in memory proc do |branch_asm| # Not using `asm.comment` here since it's usually put before cmp/test before this. branch_asm.stub(branch_stub) do case branch_stub.shape in Default branch_asm.public_send(opcode, branch_stub.target0.address) end end end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_guard_known_klass(jit, ctx, asm, known_klass, obj_opnd, insn_opnd, comptime_obj, side_exit, limit: 10) # Only memory operand is supported for now assert_equal(true, obj_opnd.is_a?(Array)) known_klass = C.to_value(known_klass) val_type = ctx.get_opnd_type(insn_opnd) if val_type.known_class == known_klass # We already know from type information that this is a match return end # Touching this as Ruby could crash for FrozenCore if known_klass == C.rb_cNilClass assert(!val_type.heap?) assert(val_type.unknown?) asm.comment('guard object is nil') asm.cmp(obj_opnd, Qnil) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) ctx.upgrade_opnd_type(insn_opnd, Type::Nil) elsif known_klass == C.rb_cTrueClass assert(!val_type.heap?) assert(val_type.unknown?) asm.comment('guard object is true') asm.cmp(obj_opnd, Qtrue) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) ctx.upgrade_opnd_type(insn_opnd, Type::True) elsif known_klass == C.rb_cFalseClass assert(!val_type.heap?) assert(val_type.unknown?) asm.comment('guard object is false') asm.cmp(obj_opnd, Qfalse) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) ctx.upgrade_opnd_type(insn_opnd, Type::False) elsif known_klass == C.rb_cInteger && fixnum?(comptime_obj) # We will guard fixnum and bignum as though they were separate classes # BIGNUM can be handled by the general else case below assert(val_type.unknown?) asm.comment('guard object is fixnum') asm.test(obj_opnd, C::RUBY_FIXNUM_FLAG) jit_chain_guard(:jz, jit, ctx, asm, side_exit, limit:) ctx.upgrade_opnd_type(insn_opnd, Type::Fixnum) elsif known_klass == C.rb_cSymbol && static_symbol?(comptime_obj) assert(!val_type.heap?) # We will guard STATIC vs DYNAMIC as though they were separate classes # DYNAMIC symbols can be handled by the general else case below if val_type != Type::ImmSymbol || !val_type.imm? assert(val_type.unknown?) asm.comment('guard object is static symbol') assert_equal(8, C::RUBY_SPECIAL_SHIFT) asm.cmp(BytePtr[*obj_opnd], C::RUBY_SYMBOL_FLAG) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) ctx.upgrade_opnd_type(insn_opnd, Type::ImmSymbol) end elsif known_klass == C.rb_cFloat && flonum?(comptime_obj) assert(!val_type.heap?) if val_type != Type::Flonum || !val_type.imm? assert(val_type.unknown?) # We will guard flonum vs heap float as though they were separate classes asm.comment('guard object is flonum') asm.mov(:rax, obj_opnd) asm.and(:rax, C::RUBY_FLONUM_MASK) asm.cmp(:rax, C::RUBY_FLONUM_FLAG) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) ctx.upgrade_opnd_type(insn_opnd, Type::Flonum) end elsif C.FL_TEST(known_klass, C::RUBY_FL_SINGLETON) && comptime_obj == C.rb_class_attached_object(known_klass) # Singleton classes are attached to one specific object, so we can # avoid one memory access (and potentially the is_heap check) by # looking for the expected object directly. # Note that in case the sample instance has a singleton class that # doesn't attach to the sample instance, it means the sample instance # has an empty singleton class that hasn't been materialized yet. In # this case, comparing against the sample instance doesn't guarantee # that its singleton class is empty, so we can't avoid the memory # access. As an example, `Object.new.singleton_class` is an object in # this situation. asm.comment('guard known object with singleton class') asm.mov(:rax, to_value(comptime_obj)) asm.cmp(obj_opnd, :rax) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) elsif val_type == Type::CString && known_klass == C.rb_cString # guard elided because the context says we've already checked assert_equal(C.to_value(C.rb_class_of(comptime_obj)), C.rb_cString) else assert(!val_type.imm?) # Load memory to a register asm.mov(:rax, obj_opnd) obj_opnd = :rax # Check that the receiver is a heap object # Note: if we get here, the class doesn't have immediate instances. unless val_type.heap? asm.comment('guard not immediate') asm.test(obj_opnd, C::RUBY_IMMEDIATE_MASK) jit_chain_guard(:jnz, jit, ctx, asm, side_exit, limit:) asm.cmp(obj_opnd, Qfalse) jit_chain_guard(:je, jit, ctx, asm, side_exit, limit:) end # Bail if receiver class is different from known_klass klass_opnd = [obj_opnd, C.RBasic.offsetof(:klass)] asm.comment("guard known class #{known_klass}") asm.mov(:rcx, known_klass) asm.cmp(klass_opnd, :rcx) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) if known_klass == C.rb_cString # Upgrading to Type::CString here is incorrect. # The guard we put only checks RBASIC_CLASS(obj), # which adding a singleton class can change. We # additionally need to know the string is frozen # to claim Type::CString. ctx.upgrade_opnd_type(insn_opnd, Type::TString) elsif known_klass == C.rb_cArray ctx.upgrade_opnd_type(insn_opnd, Type::TArray) end end end # @param jit [RubyVM::RJIT::JITState] def two_fixnums_on_stack?(jit) comptime_recv = jit.peek_at_stack(1) comptime_arg = jit.peek_at_stack(0) return fixnum?(comptime_recv) && fixnum?(comptime_arg) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def guard_two_fixnums(jit, ctx, asm) # Get stack operands without popping them arg1 = ctx.stack_opnd(0) arg0 = ctx.stack_opnd(1) # Get the stack operand types arg1_type = ctx.get_opnd_type(StackOpnd[0]) arg0_type = ctx.get_opnd_type(StackOpnd[1]) if arg0_type.heap? || arg1_type.heap? asm.comment('arg is heap object') asm.jmp(side_exit(jit, ctx)) return end if arg0_type != Type::Fixnum && arg0_type.specific? asm.comment('arg0 not fixnum') asm.jmp(side_exit(jit, ctx)) return end if arg1_type != Type::Fixnum && arg1_type.specific? asm.comment('arg1 not fixnum') asm.jmp(side_exit(jit, ctx)) return end assert(!arg0_type.heap?) assert(!arg1_type.heap?) assert(arg0_type == Type::Fixnum || arg0_type.unknown?) assert(arg1_type == Type::Fixnum || arg1_type.unknown?) # If not fixnums at run-time, fall back if arg0_type != Type::Fixnum asm.comment('guard arg0 fixnum') asm.test(arg0, C::RUBY_FIXNUM_FLAG) jit_chain_guard(:jz, jit, ctx, asm, side_exit(jit, ctx)) end if arg1_type != Type::Fixnum asm.comment('guard arg1 fixnum') asm.test(arg1, C::RUBY_FIXNUM_FLAG) jit_chain_guard(:jz, jit, ctx, asm, side_exit(jit, ctx)) end # Set stack types in context ctx.upgrade_opnd_type(StackOpnd[0], Type::Fixnum) ctx.upgrade_opnd_type(StackOpnd[1], Type::Fixnum) end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_fixnum_cmp(jit, ctx, asm, opcode:, bop:) opcode => :cmovl | :cmovle | :cmovg | :cmovge unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end comptime_recv = jit.peek_at_stack(1) comptime_obj = jit.peek_at_stack(0) if fixnum?(comptime_recv) && fixnum?(comptime_obj) unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, bop) return CantCompile end # Check that both operands are fixnums guard_two_fixnums(jit, ctx, asm) obj_opnd = ctx.stack_pop recv_opnd = ctx.stack_pop asm.mov(:rax, obj_opnd) asm.cmp(recv_opnd, :rax) asm.mov(:rax, Qfalse) asm.mov(:rcx, Qtrue) asm.public_send(opcode, :rax, :rcx) dst_opnd = ctx.stack_push(Type::UnknownImm) asm.mov(dst_opnd, :rax) KeepCompiling else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_equality_specialized(jit, ctx, asm, gen_eq) # Create a side-exit to fall back to the interpreter side_exit = side_exit(jit, ctx) a_opnd = ctx.stack_opnd(1) b_opnd = ctx.stack_opnd(0) comptime_a = jit.peek_at_stack(1) comptime_b = jit.peek_at_stack(0) if two_fixnums_on_stack?(jit) unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_EQ) return false end guard_two_fixnums(jit, ctx, asm) asm.comment('check fixnum equality') asm.mov(:rax, a_opnd) asm.mov(:rcx, b_opnd) asm.cmp(:rax, :rcx) asm.mov(:rax, gen_eq ? Qfalse : Qtrue) asm.mov(:rcx, gen_eq ? Qtrue : Qfalse) asm.cmove(:rax, :rcx) # Push the output on the stack ctx.stack_pop(2) dst = ctx.stack_push(Type::UnknownImm) asm.mov(dst, :rax) true elsif C.rb_class_of(comptime_a) == String && C.rb_class_of(comptime_b) == String unless Invariants.assume_bop_not_redefined(jit, C::STRING_REDEFINED_OP_FLAG, C::BOP_EQ) # if overridden, emit the generic version return false end # Guard that a is a String jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_a), a_opnd, StackOpnd[1], comptime_a, side_exit) equal_label = asm.new_label(:equal) ret_label = asm.new_label(:ret) # If they are equal by identity, return true asm.mov(:rax, a_opnd) asm.mov(:rcx, b_opnd) asm.cmp(:rax, :rcx) asm.je(equal_label) # Otherwise guard that b is a T_STRING (from type info) or String (from runtime guard) btype = ctx.get_opnd_type(StackOpnd[0]) unless btype.string? # Note: any T_STRING is valid here, but we check for a ::String for simplicity # To pass a mutable static variable (rb_cString) requires an unsafe block jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_b), b_opnd, StackOpnd[0], comptime_b, side_exit) end asm.comment('call rb_str_eql_internal') asm.mov(C_ARGS[0], a_opnd) asm.mov(C_ARGS[1], b_opnd) asm.call(gen_eq ? C.rb_str_eql_internal : C.rjit_str_neq_internal) # Push the output on the stack ctx.stack_pop(2) dst = ctx.stack_push(Type::UnknownImm) asm.mov(dst, C_RET) asm.jmp(ret_label) asm.write_label(equal_label) asm.mov(dst, gen_eq ? Qtrue : Qfalse) asm.write_label(ret_label) true else false end end # NOTE: This clobbers :rax # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_prepare_routine_call(jit, ctx, asm) jit.record_boundary_patch_point = true jit_save_pc(jit, asm) jit_save_sp(ctx, asm) # In case the routine calls Ruby methods, it can set local variables # through Kernel#binding and other means. ctx.clear_local_types end # NOTE: This clobbers :rax # @param jit [RubyVM::RJIT::JITState] # @param asm [RubyVM::RJIT::Assembler] def jit_save_pc(jit, asm, comment: 'save PC to CFP') next_pc = jit.pc + jit.insn.len * C.VALUE.size # Use the next one for backtrace and side exits asm.comment(comment) asm.mov(:rax, next_pc) asm.mov([CFP, C.rb_control_frame_t.offsetof(:pc)], :rax) end # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_save_sp(ctx, asm) if ctx.sp_offset != 0 asm.comment('save SP to CFP') asm.lea(SP, ctx.sp_opnd) asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP) ctx.sp_offset = 0 end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jump_to_next_insn(jit, ctx, asm) reset_depth = ctx.dup reset_depth.chain_depth = 0 next_pc = jit.pc + jit.insn.len * C.VALUE.size # We are at the end of the current instruction. Record the boundary. if jit.record_boundary_patch_point exit_pos = Assembler.new.then do |ocb_asm| @exit_compiler.compile_side_exit(next_pc, ctx, ocb_asm) @ocb.write(ocb_asm) end Invariants.record_global_inval_patch(asm, exit_pos) jit.record_boundary_patch_point = false end jit_direct_jump(jit.iseq, next_pc, reset_depth, asm, comment: 'jump_to_next_insn') end # rb_vm_check_ints # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_check_ints(jit, ctx, asm) asm.comment('RUBY_VM_CHECK_INTS(ec)') asm.mov(:eax, DwordPtr[EC, C.rb_execution_context_t.offsetof(:interrupt_flag)]) asm.test(:eax, :eax) asm.jnz(side_exit(jit, ctx)) end # See get_lvar_level in compile.c def get_lvar_level(iseq) level = 0 while iseq.to_i != iseq.body.local_iseq.to_i level += 1 iseq = iseq.body.parent_iseq end return level end # GET_LEP # @param jit [RubyVM::RJIT::JITState] # @param asm [RubyVM::RJIT::Assembler] def jit_get_lep(jit, asm, reg:) level = get_lvar_level(jit.iseq) jit_get_ep(asm, level, reg:) end # vm_get_ep # @param asm [RubyVM::RJIT::Assembler] def jit_get_ep(asm, level, reg:) asm.mov(reg, [CFP, C.rb_control_frame_t.offsetof(:ep)]) level.times do # GET_PREV_EP: ep[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03 asm.mov(reg, [reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) asm.and(reg, ~0x03) end end # vm_getivar # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_getivar(jit, ctx, asm, comptime_obj, ivar_id, obj_opnd, obj_yarv_opnd) side_exit = side_exit(jit, ctx) starting_ctx = ctx.dup # copy for jit_chain_guard # Guard not special const if C::SPECIAL_CONST_P(comptime_obj) asm.incr_counter(:getivar_special_const) return CantCompile end case C::BUILTIN_TYPE(comptime_obj) when C::T_OBJECT # This is the only supported case for now (ROBJECT_IVPTR) else # General case. Call rb_ivar_get(). # VALUE rb_ivar_get(VALUE obj, ID id) asm.comment('call rb_ivar_get()') asm.mov(C_ARGS[0], obj_opnd ? obj_opnd : [CFP, C.rb_control_frame_t.offsetof(:self)]) asm.mov(C_ARGS[1], ivar_id) # The function could raise exceptions. jit_prepare_routine_call(jit, ctx, asm) # clobbers obj_opnd and :rax asm.call(C.rb_ivar_get) if obj_opnd # attr_reader ctx.stack_pop end # Push the ivar on the stack out_opnd = ctx.stack_push(Type::Unknown) asm.mov(out_opnd, C_RET) # Jump to next instruction. This allows guard chains to share the same successor. jump_to_next_insn(jit, ctx, asm) return EndBlock end asm.mov(:rax, obj_opnd ? obj_opnd : [CFP, C.rb_control_frame_t.offsetof(:self)]) guard_object_is_heap(jit, ctx, asm, :rax, obj_yarv_opnd, :getivar_not_heap) shape_id = C.rb_shape_get_shape_id(comptime_obj) if shape_id == C::OBJ_TOO_COMPLEX_SHAPE_ID asm.incr_counter(:getivar_too_complex) return CantCompile end asm.comment('guard shape') asm.cmp(DwordPtr[:rax, C.rb_shape_id_offset], shape_id) jit_chain_guard(:jne, jit, starting_ctx, asm, counted_exit(side_exit, :getivar_megamorphic)) if obj_opnd ctx.stack_pop # pop receiver for attr_reader end index = C.rb_shape_get_iv_index(shape_id, ivar_id) # If there is no IVAR index, then the ivar was undefined # when we entered the compiler. That means we can just return # nil for this shape + iv name if index.nil? stack_opnd = ctx.stack_push(Type::Nil) val_opnd = Qnil else asm.comment('ROBJECT_IVPTR') if C::FL_TEST_RAW(comptime_obj, C::ROBJECT_EMBED) # Access embedded array asm.mov(:rax, [:rax, C.RObject.offsetof(:as, :ary) + (index * C.VALUE.size)]) else # Pull out an ivar table on heap asm.mov(:rax, [:rax, C.RObject.offsetof(:as, :heap, :ivptr)]) # Read the table asm.mov(:rax, [:rax, index * C.VALUE.size]) end stack_opnd = ctx.stack_push(Type::Unknown) val_opnd = :rax end asm.mov(stack_opnd, val_opnd) # Let guard chains share the same successor jump_to_next_insn(jit, ctx, asm) EndBlock end def jit_write_iv(asm, comptime_receiver, recv_reg, temp_reg, ivar_index, set_value, needs_extension) # Compile time self is embedded and the ivar index lands within the object embed_test_result = C::FL_TEST_RAW(comptime_receiver, C::ROBJECT_EMBED) && !needs_extension if embed_test_result # Find the IV offset offs = C.RObject.offsetof(:as, :ary) + ivar_index * C.VALUE.size # Write the IV asm.comment('write IV') asm.mov(temp_reg, set_value) asm.mov([recv_reg, offs], temp_reg) else # Compile time value is *not* embedded. # Get a pointer to the extended table asm.mov(recv_reg, [recv_reg, C.RObject.offsetof(:as, :heap, :ivptr)]) # Write the ivar in to the extended table asm.comment("write IV"); asm.mov(temp_reg, set_value) asm.mov([recv_reg, C.VALUE.size * ivar_index], temp_reg) end end # vm_caller_setup_arg_block: Handle VM_CALL_ARGS_BLOCKARG cases. # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def guard_block_arg(jit, ctx, asm, calling) if calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0 block_arg_type = ctx.get_opnd_type(StackOpnd[0]) case block_arg_type in Type::Nil calling.block_handler = C::VM_BLOCK_HANDLER_NONE in Type::BlockParamProxy calling.block_handler = C.rb_block_param_proxy else asm.incr_counter(:send_block_arg) return CantCompile end end end # vm_search_method # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_search_method(jit, ctx, asm, mid, calling) assert_equal(true, jit.at_current_insn?) # Generate a side exit side_exit = side_exit(jit, ctx) # kw_splat is not supported yet if calling.flags & C::VM_CALL_KW_SPLAT != 0 asm.incr_counter(:send_kw_splat) return CantCompile end # Get a compile-time receiver and its class recv_idx = calling.argc + (calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0) # blockarg is not popped yet recv_idx += calling.send_shift comptime_recv = jit.peek_at_stack(recv_idx) comptime_recv_klass = C.rb_class_of(comptime_recv) # Guard the receiver class (part of vm_search_method_fastpath) recv_opnd = ctx.stack_opnd(recv_idx) megamorphic_exit = counted_exit(side_exit, :send_klass_megamorphic) jit_guard_known_klass(jit, ctx, asm, comptime_recv_klass, recv_opnd, StackOpnd[recv_idx], comptime_recv, megamorphic_exit) # Do method lookup (vm_cc_cme(cc) != NULL) cme = C.rb_callable_method_entry(comptime_recv_klass, mid) if cme.nil? asm.incr_counter(:send_missing_cme) return CantCompile # We don't support vm_call_method_name end # Invalidate on redefinition (part of vm_search_method_fastpath) Invariants.assume_method_lookup_stable(jit, cme) return cme, comptime_recv_klass end # vm_call_general # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_general(jit, ctx, asm, mid, calling, cme, known_recv_class) jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class) end # vm_call_method # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] # @param send_shift [Integer] The number of shifts needed for VM_CALL_OPT_SEND def jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class) # The main check of vm_call_method before vm_call_method_each_type case C::METHOD_ENTRY_VISI(cme) in C::METHOD_VISI_PUBLIC # You can always call public methods in C::METHOD_VISI_PRIVATE # Allow only callsites without a receiver if calling.flags & C::VM_CALL_FCALL == 0 asm.incr_counter(:send_private) return CantCompile end in C::METHOD_VISI_PROTECTED # If the method call is an FCALL, it is always valid if calling.flags & C::VM_CALL_FCALL == 0 # otherwise we need an ancestry check to ensure the receiver is valid to be called as protected jit_protected_callee_ancestry_guard(asm, cme, side_exit(jit, ctx)) end end # Get a compile-time receiver recv_idx = calling.argc + (calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0) # blockarg is not popped yet recv_idx += calling.send_shift comptime_recv = jit.peek_at_stack(recv_idx) recv_opnd = ctx.stack_opnd(recv_idx) jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) end # Generate ancestry guard for protected callee. # Calls to protected callees only go through when self.is_a?(klass_that_defines_the_callee). def jit_protected_callee_ancestry_guard(asm, cme, side_exit) # See vm_call_method(). def_class = cme.defined_class # Note: PC isn't written to current control frame as rb_is_kind_of() shouldn't raise. # VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass); asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:self)]) asm.mov(C_ARGS[1], to_value(def_class)) asm.call(C.rb_obj_is_kind_of) asm.test(C_RET, C_RET) asm.jz(counted_exit(side_exit, :send_protected_check_failed)) end # vm_call_method_each_type # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) case cme.def.type in C::VM_METHOD_TYPE_ISEQ iseq = def_iseq_ptr(cme.def) jit_call_iseq(jit, ctx, asm, cme, calling, iseq) in C::VM_METHOD_TYPE_NOTIMPLEMENTED asm.incr_counter(:send_notimplemented) return CantCompile in C::VM_METHOD_TYPE_CFUNC jit_call_cfunc(jit, ctx, asm, cme, calling, known_recv_class:) in C::VM_METHOD_TYPE_ATTRSET jit_call_attrset(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd) in C::VM_METHOD_TYPE_IVAR jit_call_ivar(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd) in C::VM_METHOD_TYPE_MISSING asm.incr_counter(:send_missing) return CantCompile in C::VM_METHOD_TYPE_BMETHOD jit_call_bmethod(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) in C::VM_METHOD_TYPE_ALIAS jit_call_alias(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) in C::VM_METHOD_TYPE_OPTIMIZED jit_call_optimized(jit, ctx, asm, cme, calling, known_recv_class) in C::VM_METHOD_TYPE_UNDEF asm.incr_counter(:send_undef) return CantCompile in C::VM_METHOD_TYPE_ZSUPER asm.incr_counter(:send_zsuper) return CantCompile in C::VM_METHOD_TYPE_REFINED asm.incr_counter(:send_refined) return CantCompile end end # vm_call_iseq_setup # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_iseq(jit, ctx, asm, cme, calling, iseq, frame_type: nil, prev_ep: nil) argc = calling.argc flags = calling.flags send_shift = calling.send_shift # When you have keyword arguments, there is an extra object that gets # placed on the stack the represents a bitmap of the keywords that were not # specified at the call site. We need to keep track of the fact that this # value is present on the stack in order to properly set up the callee's # stack pointer. doing_kw_call = iseq.body.param.flags.has_kw supplying_kws = flags & C::VM_CALL_KWARG != 0 if flags & C::VM_CALL_TAILCALL != 0 # We can't handle tailcalls asm.incr_counter(:send_tailcall) return CantCompile end # No support for callees with these parameters yet as they require allocation # or complex handling. if iseq.body.param.flags.has_post asm.incr_counter(:send_iseq_has_opt) return CantCompile end if iseq.body.param.flags.has_kwrest asm.incr_counter(:send_iseq_has_kwrest) return CantCompile end # In order to handle backwards compatibility between ruby 3 and 2 # ruby2_keywords was introduced. It is called only on methods # with splat and changes they way they handle them. # We are just going to not compile these. # https://www.rubydoc.info/stdlib/core/Proc:ruby2_keywords if iseq.body.param.flags.ruby2_keywords && flags & C::VM_CALL_ARGS_SPLAT != 0 asm.incr_counter(:send_iseq_ruby2_keywords) return CantCompile end iseq_has_rest = iseq.body.param.flags.has_rest if iseq_has_rest && calling.block_handler == :captured asm.incr_counter(:send_iseq_has_rest_and_captured) return CantCompile end if iseq_has_rest && iseq.body.param.flags.has_kw && supplying_kws asm.incr_counter(:send_iseq_has_rest_and_kw_supplied) return CantCompile end # If we have keyword arguments being passed to a callee that only takes # positionals, then we need to allocate a hash. For now we're going to # call that too complex and bail. if supplying_kws && !iseq.body.param.flags.has_kw asm.incr_counter(:send_iseq_has_no_kw) return CantCompile end # If we have a method accepting no kwargs (**nil), exit if we have passed # it any kwargs. if supplying_kws && iseq.body.param.flags.accepts_no_kwarg asm.incr_counter(:send_iseq_accepts_no_kwarg) return CantCompile end # For computing number of locals to set up for the callee num_params = iseq.body.param.size # Block parameter handling. This mirrors setup_parameters_complex(). if iseq.body.param.flags.has_block if iseq.body.local_iseq.to_i == iseq.to_i num_params -= 1 else # In this case (param.flags.has_block && local_iseq != iseq), # the block argument is setup as a local variable and requires # materialization (allocation). Bail. asm.incr_counter(:send_iseq_materialized_block) return CantCompile end end if flags & C::VM_CALL_ARGS_SPLAT != 0 && flags & C::VM_CALL_ZSUPER != 0 # zsuper methods are super calls without any arguments. # They are also marked as splat, but don't actually have an array # they pull arguments from, instead we need to change to call # a different method with the current stack. asm.incr_counter(:send_iseq_zsuper) return CantCompile end start_pc_offset = 0 required_num = iseq.body.param.lead_num # This struct represents the metadata about the caller-specified # keyword arguments. kw_arg = calling.kwarg kw_arg_num = if kw_arg.nil? 0 else kw_arg.keyword_len end # Arity handling and optional parameter setup opts_filled = argc - required_num - kw_arg_num opt_num = iseq.body.param.opt_num opts_missing = opt_num - opts_filled if doing_kw_call && flags & C::VM_CALL_ARGS_SPLAT != 0 asm.incr_counter(:send_iseq_splat_with_kw) return CantCompile end if iseq_has_rest && opt_num != 0 asm.incr_counter(:send_iseq_has_rest_and_optional) return CantCompile end if opts_filled < 0 && flags & C::VM_CALL_ARGS_SPLAT == 0 # Too few arguments and no splat to make up for it asm.incr_counter(:send_iseq_arity_error) return CantCompile end if opts_filled > opt_num && !iseq_has_rest # Too many arguments and no place to put them (i.e. rest arg) asm.incr_counter(:send_iseq_arity_error) return CantCompile end block_arg = flags & C::VM_CALL_ARGS_BLOCKARG != 0 # Guard block_arg_type if guard_block_arg(jit, ctx, asm, calling) == CantCompile return CantCompile end # If we have unfilled optional arguments and keyword arguments then we # would need to adjust the arguments location to account for that. # For now we aren't handling this case. if doing_kw_call && opts_missing > 0 asm.incr_counter(:send_iseq_missing_optional_kw) return CantCompile end # We will handle splat case later if opt_num > 0 && flags & C::VM_CALL_ARGS_SPLAT == 0 num_params -= opts_missing start_pc_offset = iseq.body.param.opt_table[opts_filled] end if doing_kw_call # Here we're calling a method with keyword arguments and specifying # keyword arguments at this call site. # This struct represents the metadata about the callee-specified # keyword parameters. keyword = iseq.body.param.keyword keyword_num = keyword.num keyword_required_num = keyword.required_num required_kwargs_filled = 0 if keyword_num > 30 # We have so many keywords that (1 << num) encoded as a FIXNUM # (which shifts it left one more) no longer fits inside a 32-bit # immediate. asm.incr_counter(:send_iseq_too_many_kwargs) return CantCompile end # Check that the kwargs being passed are valid if supplying_kws # This is the list of keyword arguments that the callee specified # in its initial declaration. # SAFETY: see compile.c for sizing of this slice. callee_kwargs = keyword_num.times.map { |i| keyword.table[i] } # Here we're going to build up a list of the IDs that correspond to # the caller-specified keyword arguments. If they're not in the # same order as the order specified in the callee declaration, then # we're going to need to generate some code to swap values around # on the stack. caller_kwargs = [] kw_arg.keyword_len.times do |kwarg_idx| sym = C.to_ruby(kw_arg[:keywords][kwarg_idx]) caller_kwargs << C.rb_sym2id(sym) end # First, we're going to be sure that the names of every # caller-specified keyword argument correspond to a name in the # list of callee-specified keyword parameters. caller_kwargs.each do |caller_kwarg| search_result = callee_kwargs.map.with_index.find { |kwarg, _| kwarg == caller_kwarg } case search_result in nil # If the keyword was never found, then we know we have a # mismatch in the names of the keyword arguments, so we need to # bail. asm.incr_counter(:send_iseq_kwargs_mismatch) return CantCompile in _, callee_idx if callee_idx < keyword_required_num # Keep a count to ensure all required kwargs are specified required_kwargs_filled += 1 else end end end assert_equal(true, required_kwargs_filled <= keyword_required_num) if required_kwargs_filled != keyword_required_num asm.incr_counter(:send_iseq_kwargs_mismatch) return CantCompile end end # Check if we need the arg0 splat handling of vm_callee_setup_block_arg arg_setup_block = (calling.block_handler == :captured) # arg_setup_type: arg_setup_block (invokeblock) block_arg0_splat = arg_setup_block && argc == 1 && (iseq.body.param.flags.has_lead || opt_num > 1) && !iseq.body.param.flags.ambiguous_param0 if block_arg0_splat # If block_arg0_splat, we still need side exits after splat, but # doing push_splat_args here disallows it. So bail out. if flags & C::VM_CALL_ARGS_SPLAT != 0 && !iseq_has_rest asm.incr_counter(:invokeblock_iseq_arg0_args_splat) return CantCompile end # The block_arg0_splat implementation is for the rb_simple_iseq_p case, # but doing_kw_call means it's not a simple ISEQ. if doing_kw_call asm.incr_counter(:invokeblock_iseq_arg0_has_kw) return CantCompile end # The block_arg0_splat implementation cannot deal with optional parameters. # This is a setup_parameters_complex() situation and interacts with the # starting position of the callee. if opt_num > 1 asm.incr_counter(:invokeblock_iseq_arg0_optional) return CantCompile end end if flags & C::VM_CALL_ARGS_SPLAT != 0 && !iseq_has_rest array = jit.peek_at_stack(block_arg ? 1 : 0) splat_array_length = if array.nil? 0 else array.length end if opt_num == 0 && required_num != splat_array_length + argc - 1 asm.incr_counter(:send_iseq_splat_arity_error) return CantCompile end end # We will not have CantCompile from here. if block_arg ctx.stack_pop(1) end if calling.block_handler == C::VM_BLOCK_HANDLER_NONE && iseq.body.builtin_attrs & C::BUILTIN_ATTR_LEAF != 0 if jit_leaf_builtin_func(jit, ctx, asm, flags, iseq) return KeepCompiling end end # Number of locals that are not parameters num_locals = iseq.body.local_table_size - num_params # Stack overflow check # Note that vm_push_frame checks it against a decremented cfp, hence the multiply by 2. # #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin) asm.comment('stack overflow check') locals_offs = C.VALUE.size * (num_locals + iseq.body.stack_max) + 2 * C.rb_control_frame_t.size asm.lea(:rax, ctx.sp_opnd(locals_offs)) asm.cmp(CFP, :rax) asm.jbe(counted_exit(side_exit(jit, ctx), :send_stackoverflow)) # push_splat_args does stack manipulation so we can no longer side exit if splat_array_length remaining_opt = (opt_num + required_num) - (splat_array_length + (argc - 1)) if opt_num > 0 # We are going to jump to the correct offset based on how many optional # params are remaining. offset = opt_num - remaining_opt start_pc_offset = iseq.body.param.opt_table[offset] end # We are going to assume that the splat fills # all the remaining arguments. In the generated code # we test if this is true and if not side exit. argc = argc - 1 + splat_array_length + remaining_opt push_splat_args(splat_array_length, jit, ctx, asm) remaining_opt.times do # We need to push nil for the optional arguments stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, Qnil) end end # This is a .send call and we need to adjust the stack if flags & C::VM_CALL_OPT_SEND != 0 handle_opt_send_shift_stack(asm, argc, ctx, send_shift:) end if iseq_has_rest # We are going to allocate so setting pc and sp. jit_save_pc(jit, asm) # clobbers rax jit_save_sp(ctx, asm) if flags & C::VM_CALL_ARGS_SPLAT != 0 non_rest_arg_count = argc - 1 # We start by dupping the array because someone else might have # a reference to it. array = ctx.stack_pop(1) asm.mov(C_ARGS[0], array) asm.call(C.rb_ary_dup) array = C_RET if non_rest_arg_count > required_num # If we have more arguments than required, we need to prepend # the items from the stack onto the array. diff = (non_rest_arg_count - required_num) # diff is >0 so no need to worry about null pointer asm.comment('load pointer to array elements') offset_magnitude = C.VALUE.size * diff values_opnd = ctx.sp_opnd(-offset_magnitude) values_ptr = :rcx asm.lea(values_ptr, values_opnd) asm.comment('prepend stack values to rest array') asm.mov(C_ARGS[0], diff) asm.mov(C_ARGS[1], values_ptr) asm.mov(C_ARGS[2], array) asm.call(C.rb_ary_unshift_m) ctx.stack_pop(diff) stack_ret = ctx.stack_push(Type::TArray) asm.mov(stack_ret, C_RET) # We now should have the required arguments # and an array of all the rest arguments argc = required_num + 1 elsif non_rest_arg_count < required_num # If we have fewer arguments than required, we need to take some # from the array and move them to the stack. diff = (required_num - non_rest_arg_count) # This moves the arguments onto the stack. But it doesn't modify the array. move_rest_args_to_stack(array, diff, jit, ctx, asm) # We will now slice the array to give us a new array of the correct size asm.mov(C_ARGS[0], array) asm.mov(C_ARGS[1], diff) asm.call(C.rjit_rb_ary_subseq_length) stack_ret = ctx.stack_push(Type::TArray) asm.mov(stack_ret, C_RET) # We now should have the required arguments # and an array of all the rest arguments argc = required_num + 1 else # The arguments are equal so we can just push to the stack assert_equal(non_rest_arg_count, required_num) stack_ret = ctx.stack_push(Type::TArray) asm.mov(stack_ret, array) end else assert_equal(true, argc >= required_num) n = (argc - required_num) argc = required_num + 1 # If n is 0, then elts is never going to be read, so we can just pass null if n == 0 values_ptr = 0 else asm.comment('load pointer to array elements') offset_magnitude = C.VALUE.size * n values_opnd = ctx.sp_opnd(-offset_magnitude) values_ptr = :rcx asm.lea(values_ptr, values_opnd) end asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], n) asm.mov(C_ARGS[2], values_ptr) asm.call(C.rb_ec_ary_new_from_values) ctx.stack_pop(n) stack_ret = ctx.stack_push(Type::TArray) asm.mov(stack_ret, C_RET) end end if doing_kw_call # Here we're calling a method with keyword arguments and specifying # keyword arguments at this call site. # Number of positional arguments the callee expects before the first # keyword argument args_before_kw = required_num + opt_num # This struct represents the metadata about the caller-specified # keyword arguments. ci_kwarg = calling.kwarg caller_keyword_len = if ci_kwarg.nil? 0 else ci_kwarg.keyword_len end # This struct represents the metadata about the callee-specified # keyword parameters. keyword = iseq.body.param.keyword asm.comment('keyword args') # This is the list of keyword arguments that the callee specified # in its initial declaration. callee_kwargs = keyword.table total_kwargs = keyword.num # Here we're going to build up a list of the IDs that correspond to # the caller-specified keyword arguments. If they're not in the # same order as the order specified in the callee declaration, then # we're going to need to generate some code to swap values around # on the stack. caller_kwargs = [] caller_keyword_len.times do |kwarg_idx| sym = C.to_ruby(ci_kwarg[:keywords][kwarg_idx]) caller_kwargs << C.rb_sym2id(sym) end kwarg_idx = caller_keyword_len unspecified_bits = 0 keyword_required_num = keyword.required_num (keyword_required_num...total_kwargs).each do |callee_idx| already_passed = false callee_kwarg = callee_kwargs[callee_idx] caller_keyword_len.times do |caller_idx| if caller_kwargs[caller_idx] == callee_kwarg already_passed = true break end end unless already_passed # Reserve space on the stack for each default value we'll be # filling in (which is done in the next loop). Also increments # argc so that the callee's SP is recorded correctly. argc += 1 default_arg = ctx.stack_push(Type::Unknown) # callee_idx - keyword->required_num is used in a couple of places below. req_num = keyword.required_num extra_args = callee_idx - req_num # VALUE default_value = keyword->default_values[callee_idx - keyword->required_num]; default_value = keyword.default_values[extra_args] if default_value == Qundef # Qundef means that this value is not constant and must be # recalculated at runtime, so we record it in unspecified_bits # (Qnil is then used as a placeholder instead of Qundef). unspecified_bits |= 0x01 << extra_args default_value = Qnil end asm.mov(:rax, default_value) asm.mov(default_arg, :rax) caller_kwargs[kwarg_idx] = callee_kwarg kwarg_idx += 1 end end assert_equal(kwarg_idx, total_kwargs) # Next, we're going to loop through every keyword that was # specified by the caller and make sure that it's in the correct # place. If it's not we're going to swap it around with another one. total_kwargs.times do |kwarg_idx| callee_kwarg = callee_kwargs[kwarg_idx] # If the argument is already in the right order, then we don't # need to generate any code since the expected value is already # in the right place on the stack. if callee_kwarg == caller_kwargs[kwarg_idx] next end # In this case the argument is not in the right place, so we # need to find its position where it _should_ be and swap with # that location. ((kwarg_idx + 1)...total_kwargs).each do |swap_idx| if callee_kwarg == caller_kwargs[swap_idx] # First we're going to generate the code that is going # to perform the actual swapping at runtime. offset0 = argc - 1 - swap_idx - args_before_kw offset1 = argc - 1 - kwarg_idx - args_before_kw stack_swap(jit, ctx, asm, offset0, offset1) # Next we're going to do some bookkeeping on our end so # that we know the order that the arguments are # actually in now. caller_kwargs[kwarg_idx], caller_kwargs[swap_idx] = caller_kwargs[swap_idx], caller_kwargs[kwarg_idx] break end end end # Keyword arguments cause a special extra local variable to be # pushed onto the stack that represents the parameters that weren't # explicitly given a value and have a non-constant default. asm.mov(ctx.stack_opnd(-1), C.to_value(unspecified_bits)) end # Same as vm_callee_setup_block_arg_arg0_check and vm_callee_setup_block_arg_arg0_splat # on vm_callee_setup_block_arg for arg_setup_block. This is done after CALLER_SETUP_ARG # and CALLER_REMOVE_EMPTY_KW_SPLAT, so this implementation is put here. This may need # side exits, so you still need to allow side exits here if block_arg0_splat is true. # Note that you can't have side exits after this arg0 splat. if block_arg0_splat asm.incr_counter(:send_iseq_block_arg0_splat) return CantCompile end # Create a context for the callee callee_ctx = Context.new # Set the argument types in the callee's context argc.times do |arg_idx| stack_offs = argc - arg_idx - 1 arg_type = ctx.get_opnd_type(StackOpnd[stack_offs]) callee_ctx.set_local_type(arg_idx, arg_type) end recv_type = if calling.block_handler == :captured Type::Unknown # we don't track the type information of captured->self for now else ctx.get_opnd_type(StackOpnd[argc]) end callee_ctx.upgrade_opnd_type(SelfOpnd, recv_type) # Setup the new frame frame_type ||= C::VM_FRAME_MAGIC_METHOD | C::VM_ENV_FLAG_LOCAL jit_push_frame( jit, ctx, asm, cme, flags, argc, frame_type, calling.block_handler, iseq: iseq, local_size: num_locals, stack_max: iseq.body.stack_max, prev_ep:, doing_kw_call:, ) # Directly jump to the entry point of the callee pc = (iseq.body.iseq_encoded + start_pc_offset).to_i jit_direct_jump(iseq, pc, callee_ctx, asm) EndBlock end def jit_leaf_builtin_func(jit, ctx, asm, flags, iseq) builtin_func = builtin_function(iseq) if builtin_func.nil? return false end # this is a .send call not currently supported for builtins if flags & C::VM_CALL_OPT_SEND != 0 return false end builtin_argc = builtin_func.argc if builtin_argc + 1 >= C_ARGS.size return false end asm.comment('inlined leaf builtin') # Skip this if it doesn't trigger GC if iseq.body.builtin_attrs & C::BUILTIN_ATTR_NO_GC == 0 # The callee may allocate, e.g. Integer#abs on a Bignum. # Save SP for GC, save PC for allocation tracing, and prepare # for global invalidation after GC's VM lock contention. jit_prepare_routine_call(jit, ctx, asm) end # Call the builtin func (ec, recv, arg1, arg2, ...) asm.mov(C_ARGS[0], EC) # Copy self and arguments (0..builtin_argc).each do |i| stack_opnd = ctx.stack_opnd(builtin_argc - i) asm.mov(C_ARGS[i + 1], stack_opnd) end ctx.stack_pop(builtin_argc + 1) asm.call(builtin_func.func_ptr) # Push the return value stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) return true end # vm_call_cfunc # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_cfunc(jit, ctx, asm, cme, calling, known_recv_class: nil) argc = calling.argc flags = calling.flags cfunc = cme.def.body.cfunc cfunc_argc = cfunc.argc # If the function expects a Ruby array of arguments if cfunc_argc < 0 && cfunc_argc != -1 asm.incr_counter(:send_cfunc_ruby_array_varg) return CantCompile end # We aren't handling a vararg cfuncs with splat currently. if flags & C::VM_CALL_ARGS_SPLAT != 0 && cfunc_argc == -1 asm.incr_counter(:send_args_splat_cfunc_var_args) return CantCompile end if flags & C::VM_CALL_ARGS_SPLAT != 0 && flags & C::VM_CALL_ZSUPER != 0 # zsuper methods are super calls without any arguments. # They are also marked as splat, but don't actually have an array # they pull arguments from, instead we need to change to call # a different method with the current stack. asm.incr_counter(:send_args_splat_cfunc_zuper) return CantCompile; end # In order to handle backwards compatibility between ruby 3 and 2 # ruby2_keywords was introduced. It is called only on methods # with splat and changes they way they handle them. # We are just going to not compile these. # https://docs.ruby-lang.org/en/3.2/Module.html#method-i-ruby2_keywords if jit.iseq.body.param.flags.ruby2_keywords && flags & C::VM_CALL_ARGS_SPLAT != 0 asm.incr_counter(:send_args_splat_cfunc_ruby2_keywords) return CantCompile; end kw_arg = calling.kwarg kw_arg_num = if kw_arg.nil? 0 else kw_arg.keyword_len end if kw_arg_num != 0 && flags & C::VM_CALL_ARGS_SPLAT != 0 asm.incr_counter(:send_cfunc_splat_with_kw) return CantCompile end if c_method_tracing_currently_enabled? # Don't JIT if tracing c_call or c_return asm.incr_counter(:send_cfunc_tracing) return CantCompile end # Delegate to codegen for C methods if we have it. if kw_arg.nil? && flags & C::VM_CALL_OPT_SEND == 0 && flags & C::VM_CALL_ARGS_SPLAT == 0 && (cfunc_argc == -1 || argc == cfunc_argc) known_cfunc_codegen = lookup_cfunc_codegen(cme.def) if known_cfunc_codegen&.call(jit, ctx, asm, argc, known_recv_class) # cfunc codegen generated code. Terminate the block so # there isn't multiple calls in the same block. jump_to_next_insn(jit, ctx, asm) return EndBlock end end # Check for interrupts jit_check_ints(jit, ctx, asm) # Stack overflow check # #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin) # REG_CFP <= REG_SP + 4 * SIZEOF_VALUE + sizeof(rb_control_frame_t) asm.comment('stack overflow check') asm.lea(:rax, ctx.sp_opnd(C.VALUE.size * 4 + 2 * C.rb_control_frame_t.size)) asm.cmp(CFP, :rax) asm.jbe(counted_exit(side_exit(jit, ctx), :send_stackoverflow)) # Number of args which will be passed through to the callee # This is adjusted by the kwargs being combined into a hash. passed_argc = if kw_arg.nil? argc else argc - kw_arg_num + 1 end # If the argument count doesn't match if cfunc_argc >= 0 && cfunc_argc != passed_argc && flags & C::VM_CALL_ARGS_SPLAT == 0 asm.incr_counter(:send_cfunc_argc_mismatch) return CantCompile end # Don't JIT functions that need C stack arguments for now if cfunc_argc >= 0 && passed_argc + 1 > C_ARGS.size asm.incr_counter(:send_cfunc_toomany_args) return CantCompile end block_arg = flags & C::VM_CALL_ARGS_BLOCKARG != 0 # Guard block_arg_type if guard_block_arg(jit, ctx, asm, calling) == CantCompile return CantCompile end if block_arg ctx.stack_pop(1) end # push_splat_args does stack manipulation so we can no longer side exit if flags & C::VM_CALL_ARGS_SPLAT != 0 assert_equal(true, cfunc_argc >= 0) required_args = cfunc_argc - (argc - 1) # + 1 because we pass self if required_args + 1 >= C_ARGS.size asm.incr_counter(:send_cfunc_toomany_args) return CantCompile end # We are going to assume that the splat fills # all the remaining arguments. So the number of args # should just equal the number of args the cfunc takes. # In the generated code we test if this is true # and if not side exit. argc = cfunc_argc passed_argc = argc push_splat_args(required_args, jit, ctx, asm) end # This is a .send call and we need to adjust the stack if flags & C::VM_CALL_OPT_SEND != 0 handle_opt_send_shift_stack(asm, argc, ctx, send_shift: calling.send_shift) end # Points to the receiver operand on the stack # Store incremented PC into current control frame in case callee raises. jit_save_pc(jit, asm) # Increment the stack pointer by 3 (in the callee) # sp += 3 frame_type = C::VM_FRAME_MAGIC_CFUNC | C::VM_FRAME_FLAG_CFRAME | C::VM_ENV_FLAG_LOCAL if kw_arg frame_type |= C::VM_FRAME_FLAG_CFRAME_KW end jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type, calling.block_handler) if kw_arg # Build a hash from all kwargs passed asm.comment('build_kwhash') imemo_ci = calling.ci_addr # we assume all callinfos with kwargs are on the GC heap assert_equal(true, C.imemo_type_p(imemo_ci, C.imemo_callinfo)) asm.mov(C_ARGS[0], imemo_ci) asm.lea(C_ARGS[1], ctx.sp_opnd(0)) asm.call(C.rjit_build_kwhash) # Replace the stack location at the start of kwargs with the new hash stack_opnd = ctx.stack_opnd(argc - passed_argc) asm.mov(stack_opnd, C_RET) end # Copy SP because REG_SP will get overwritten sp = :rax asm.lea(sp, ctx.sp_opnd(0)) # Pop the C function arguments from the stack (in the caller) ctx.stack_pop(argc + 1) # Write interpreter SP into CFP. # Needed in case the callee yields to the block. jit_save_sp(ctx, asm) # Non-variadic method case cfunc_argc in (0..) # Non-variadic method # Copy the arguments from the stack to the C argument registers # self is the 0th argument and is at index argc from the stack top (0..passed_argc).each do |i| asm.mov(C_ARGS[i], [sp, -(argc + 1 - i) * C.VALUE.size]) end in -1 # Variadic method: rb_f_puts(int argc, VALUE *argv, VALUE recv) # The method gets a pointer to the first argument # rb_f_puts(int argc, VALUE *argv, VALUE recv) asm.mov(C_ARGS[0], passed_argc) asm.lea(C_ARGS[1], [sp, -argc * C.VALUE.size]) # argv asm.mov(C_ARGS[2], [sp, -(argc + 1) * C.VALUE.size]) # recv end # Call the C function # VALUE ret = (cfunc->func)(recv, argv[0], argv[1]); # cfunc comes from compile-time cme->def, which we assume to be stable. # Invalidation logic is in yjit_method_lookup_change() asm.comment('call C function') asm.mov(:rax, cfunc.func) asm.call(:rax) # TODO: use rel32 if close enough # Record code position for TracePoint patching. See full_cfunc_return(). Invariants.record_global_inval_patch(asm, full_cfunc_return) # Push the return value on the Ruby stack stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) # Pop the stack frame (ec->cfp++) # Instead of recalculating, we can reuse the previous CFP, which is stored in a callee-saved # register asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], CFP) # cfunc calls may corrupt types ctx.clear_local_types # Note: the return block of jit_call_iseq has ctx->sp_offset == 1 # which allows for sharing the same successor. # Jump (fall through) to the call continuation block # We do this to end the current block after the call assert_equal(1, ctx.sp_offset) jump_to_next_insn(jit, ctx, asm) EndBlock end # vm_call_attrset # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_attrset(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd) argc = calling.argc flags = calling.flags send_shift = calling.send_shift if flags & C::VM_CALL_ARGS_SPLAT != 0 asm.incr_counter(:send_attrset_splat) return CantCompile end if flags & C::VM_CALL_KWARG != 0 asm.incr_counter(:send_attrset_kwarg) return CantCompile elsif argc != 1 || !C.RB_TYPE_P(comptime_recv, C::RUBY_T_OBJECT) asm.incr_counter(:send_attrset_method) return CantCompile elsif c_method_tracing_currently_enabled? # Can't generate code for firing c_call and c_return events # See :attr-tracing: asm.incr_counter(:send_c_tracingg) return CantCompile elsif flags & C::VM_CALL_ARGS_BLOCKARG != 0 asm.incr_counter(:send_block_arg) return CantCompile end ivar_name = cme.def.body.attr.id # This is a .send call and we need to adjust the stack if flags & C::VM_CALL_OPT_SEND != 0 handle_opt_send_shift_stack(asm, argc, ctx, send_shift:) end # Save the PC and SP because the callee may allocate # Note that this modifies REG_SP, which is why we do it first jit_prepare_routine_call(jit, ctx, asm) # Get the operands from the stack val_opnd = ctx.stack_pop(1) recv_opnd = ctx.stack_pop(1) # Call rb_vm_set_ivar_id with the receiver, the ivar name, and the value asm.mov(C_ARGS[0], recv_opnd) asm.mov(C_ARGS[1], ivar_name) asm.mov(C_ARGS[2], val_opnd) asm.call(C.rb_vm_set_ivar_id) out_opnd = ctx.stack_push(Type::Unknown) asm.mov(out_opnd, C_RET) KeepCompiling end # vm_call_ivar (+ part of vm_call_method_each_type) # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_ivar(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd) argc = calling.argc flags = calling.flags if flags & C::VM_CALL_ARGS_SPLAT != 0 asm.incr_counter(:send_ivar_splat) return CantCompile end if argc != 0 asm.incr_counter(:send_arity) return CantCompile end # We don't support handle_opt_send_shift_stack for this yet. if flags & C::VM_CALL_OPT_SEND != 0 asm.incr_counter(:send_ivar_opt_send) return CantCompile end ivar_id = cme.def.body.attr.id # Not handling block_handler if flags & C::VM_CALL_ARGS_BLOCKARG != 0 asm.incr_counter(:send_block_arg) return CantCompile end jit_getivar(jit, ctx, asm, comptime_recv, ivar_id, recv_opnd, StackOpnd[0]) end # vm_call_bmethod # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_bmethod(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) proc_addr = cme.def.body.bmethod.proc proc_t = C.rb_yjit_get_proc_ptr(proc_addr) proc_block = proc_t.block if proc_block.type != C.block_type_iseq asm.incr_counter(:send_bmethod_not_iseq) return CantCompile end capture = proc_block.as.captured iseq = capture.code.iseq # TODO: implement this # Optimize for single ractor mode and avoid runtime check for # "defined with an un-shareable Proc in a different Ractor" # if !assume_single_ractor_mode(jit, ocb) # return CantCompile; # end # Passing a block to a block needs logic different from passing # a block to a method and sometimes requires allocation. Bail for now. if calling.block_handler != C::VM_BLOCK_HANDLER_NONE asm.incr_counter(:send_bmethod_blockarg) return CantCompile end jit_call_iseq( jit, ctx, asm, cme, calling, iseq, frame_type: C::VM_FRAME_MAGIC_BLOCK | C::VM_FRAME_FLAG_BMETHOD | C::VM_FRAME_FLAG_LAMBDA, prev_ep: capture.ep, ) end # vm_call_alias # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_alias(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) cme = C.rb_aliased_callable_method_entry(cme) jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) end # vm_call_optimized # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_optimized(jit, ctx, asm, cme, calling, known_recv_class) if calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0 # Not working yet asm.incr_counter(:send_block_arg) return CantCompile end case cme.def.body.optimized.type in C::OPTIMIZED_METHOD_TYPE_SEND jit_call_opt_send(jit, ctx, asm, cme, calling, known_recv_class) in C::OPTIMIZED_METHOD_TYPE_CALL jit_call_opt_call(jit, ctx, asm, cme, calling.flags, calling.argc, calling.block_handler, known_recv_class, send_shift: calling.send_shift) in C::OPTIMIZED_METHOD_TYPE_BLOCK_CALL asm.incr_counter(:send_optimized_block_call) return CantCompile in C::OPTIMIZED_METHOD_TYPE_STRUCT_AREF jit_call_opt_struct_aref(jit, ctx, asm, cme, calling.flags, calling.argc, calling.block_handler, known_recv_class, send_shift: calling.send_shift) in C::OPTIMIZED_METHOD_TYPE_STRUCT_ASET asm.incr_counter(:send_optimized_struct_aset) return CantCompile end end # vm_call_opt_send # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_opt_send(jit, ctx, asm, cme, calling, known_recv_class) if jit_caller_setup_arg(jit, ctx, asm, calling.flags) == CantCompile return CantCompile end if calling.argc == 0 asm.incr_counter(:send_optimized_send_no_args) return CantCompile end calling.argc -= 1 # We aren't handling `send(:send, ...)` yet. This might work, but not tested yet. if calling.send_shift > 0 asm.incr_counter(:send_optimized_send_send) return CantCompile end # Lazily handle stack shift in handle_opt_send_shift_stack calling.send_shift += 1 jit_call_symbol(jit, ctx, asm, cme, calling, known_recv_class, C::VM_CALL_FCALL) end # vm_call_opt_call # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_opt_call(jit, ctx, asm, cme, flags, argc, block_handler, known_recv_class, send_shift:) if block_handler != C::VM_BLOCK_HANDLER_NONE asm.incr_counter(:send_optimized_call_block) return CantCompile end if flags & C::VM_CALL_KWARG != 0 asm.incr_counter(:send_optimized_call_kwarg) return CantCompile end if flags & C::VM_CALL_ARGS_SPLAT != 0 asm.incr_counter(:send_optimized_call_splat) return CantCompile end # TODO: implement this # Optimize for single ractor mode and avoid runtime check for # "defined with an un-shareable Proc in a different Ractor" # if !assume_single_ractor_mode(jit, ocb) # return CantCompile # end # If this is a .send call we need to adjust the stack if flags & C::VM_CALL_OPT_SEND != 0 handle_opt_send_shift_stack(asm, argc, ctx, send_shift:) end # About to reset the SP, need to load this here recv_idx = argc # blockarg is not supported. send_shift is already handled. asm.mov(:rcx, ctx.stack_opnd(recv_idx)) # recv # Save the PC and SP because the callee can make Ruby calls jit_prepare_routine_call(jit, ctx, asm) # NOTE: clobbers rax asm.lea(:rax, ctx.sp_opnd(0)) # sp kw_splat = flags & C::VM_CALL_KW_SPLAT asm.mov(C_ARGS[0], :rcx) asm.mov(C_ARGS[1], EC) asm.mov(C_ARGS[2], argc) asm.lea(C_ARGS[3], [:rax, -argc * C.VALUE.size]) # stack_argument_pointer. NOTE: C_ARGS[3] is rcx asm.mov(C_ARGS[4], kw_splat) asm.mov(C_ARGS[5], C::VM_BLOCK_HANDLER_NONE) asm.call(C.rjit_optimized_call) ctx.stack_pop(argc + 1) stack_ret = ctx.stack_push(Type::Unknown) asm.mov(stack_ret, C_RET) return KeepCompiling end # vm_call_opt_struct_aref # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_opt_struct_aref(jit, ctx, asm, cme, flags, argc, block_handler, known_recv_class, send_shift:) if argc != 0 asm.incr_counter(:send_optimized_struct_aref_error) return CantCompile end off = cme.def.body.optimized.index recv_idx = argc # blockarg is not supported recv_idx += send_shift comptime_recv = jit.peek_at_stack(recv_idx) # This is a .send call and we need to adjust the stack if flags & C::VM_CALL_OPT_SEND != 0 handle_opt_send_shift_stack(asm, argc, ctx, send_shift:) end # All structs from the same Struct class should have the same # length. So if our comptime_recv is embedded all runtime # structs of the same class should be as well, and the same is # true of the converse. embedded = C::FL_TEST_RAW(comptime_recv, C::RSTRUCT_EMBED_LEN_MASK) asm.comment('struct aref') asm.mov(:rax, ctx.stack_pop(1)) # recv if embedded asm.mov(:rax, [:rax, C.RStruct.offsetof(:as, :ary) + (C.VALUE.size * off)]) else asm.mov(:rax, [:rax, C.RStruct.offsetof(:as, :heap, :ptr)]) asm.mov(:rax, [:rax, C.VALUE.size * off]) end ret = ctx.stack_push(Type::Unknown) asm.mov(ret, :rax) jump_to_next_insn(jit, ctx, asm) EndBlock end # vm_call_opt_send (lazy part) # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def handle_opt_send_shift_stack(asm, argc, ctx, send_shift:) # We don't support `send(:send, ...)` for now. assert_equal(1, send_shift) asm.comment('shift stack') (0...argc).reverse_each do |i| opnd = ctx.stack_opnd(i) opnd2 = ctx.stack_opnd(i + 1) asm.mov(:rax, opnd) asm.mov(opnd2, :rax) end ctx.shift_stack(argc) end # vm_call_symbol # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_call_symbol(jit, ctx, asm, cme, calling, known_recv_class, flags) flags |= C::VM_CALL_OPT_SEND | (calling.kw_splat ? C::VM_CALL_KW_SPLAT : 0) comptime_symbol = jit.peek_at_stack(calling.argc) if comptime_symbol.class != String && !static_symbol?(comptime_symbol) asm.incr_counter(:send_optimized_send_not_sym_or_str) return CantCompile end mid = C.get_symbol_id(comptime_symbol) if mid == 0 asm.incr_counter(:send_optimized_send_null_mid) return CantCompile end asm.comment("Guard #{comptime_symbol.inspect} is on stack") class_changed_exit = counted_exit(side_exit(jit, ctx), :send_optimized_send_mid_class_changed) jit_guard_known_klass( jit, ctx, asm, C.rb_class_of(comptime_symbol), ctx.stack_opnd(calling.argc), StackOpnd[calling.argc], comptime_symbol, class_changed_exit, ) asm.mov(C_ARGS[0], ctx.stack_opnd(calling.argc)) asm.call(C.rb_get_symbol_id) asm.cmp(C_RET, mid) id_changed_exit = counted_exit(side_exit(jit, ctx), :send_optimized_send_mid_id_changed) jit_chain_guard(:jne, jit, ctx, asm, id_changed_exit) # rb_callable_method_entry_with_refinements calling.flags = flags cme, _ = jit_search_method(jit, ctx, asm, mid, calling) if cme == CantCompile return CantCompile end if flags & C::VM_CALL_FCALL != 0 return jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class) end raise NotImplementedError # unreachable for now end # vm_push_frame # # Frame structure: # | args | locals | cme/cref | block_handler/prev EP | frame type (EP here) | stack bottom (SP here) # # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type, block_handler, iseq: nil, local_size: 0, stack_max: 0, prev_ep: nil, doing_kw_call: nil) # Save caller SP and PC before pushing a callee frame for backtrace and side exits asm.comment('save SP to caller CFP') recv_idx = argc # blockarg is already popped recv_idx += (block_handler == :captured) ? 0 : 1 # receiver is not on stack when captured->self is used if iseq # Skip setting this to SP register. This cfp->sp will be copied to SP on leave insn. asm.lea(:rax, ctx.sp_opnd(C.VALUE.size * -recv_idx)) # Pop receiver and arguments to prepare for side exits asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], :rax) else asm.lea(SP, ctx.sp_opnd(C.VALUE.size * -recv_idx)) asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP) ctx.sp_offset = recv_idx end jit_save_pc(jit, asm, comment: 'save PC to caller CFP') sp_offset = ctx.sp_offset + 3 + local_size + (doing_kw_call ? 1 : 0) # callee_sp local_size.times do |i| asm.comment('set local variables') if i == 0 local_index = sp_offset + i - local_size - 3 asm.mov([SP, C.VALUE.size * local_index], Qnil) end asm.comment('set up EP with managing data') ep_offset = sp_offset - 1 # ep[-2]: cref_or_me asm.mov(:rax, cme.to_i) asm.mov([SP, C.VALUE.size * (ep_offset - 2)], :rax) # ep[-1]: block handler or prev env ptr (specval) if prev_ep asm.mov(:rax, prev_ep.to_i | 1) # tagged prev ep asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax) elsif block_handler == :captured # Set captured->ep, saving captured in :rcx for captured->self ep_reg = :rcx jit_get_lep(jit, asm, reg: ep_reg) asm.mov(:rcx, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler asm.and(:rcx, ~0x3) # captured asm.mov(:rax, [:rcx, C.VALUE.size]) # captured->ep asm.or(:rax, 0x1) # GC_GUARDED_PTR asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax) elsif block_handler == C::VM_BLOCK_HANDLER_NONE asm.mov([SP, C.VALUE.size * (ep_offset - 1)], C::VM_BLOCK_HANDLER_NONE) elsif block_handler == C.rb_block_param_proxy # vm_caller_setup_arg_block: block_code == rb_block_param_proxy jit_get_lep(jit, asm, reg: :rax) # VM_CF_BLOCK_HANDLER: VM_CF_LEP asm.mov(:rax, [:rax, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # VM_CF_BLOCK_HANDLER: VM_ENV_BLOCK_HANDLER asm.mov([CFP, C.rb_control_frame_t.offsetof(:block_code)], :rax) # reg_cfp->block_code = handler asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax) # return handler; else # assume blockiseq asm.mov(:rax, block_handler) asm.mov([CFP, C.rb_control_frame_t.offsetof(:block_code)], :rax) asm.lea(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) # VM_CFP_TO_CAPTURED_BLOCK asm.or(:rax, 1) # VM_BH_FROM_ISEQ_BLOCK asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax) end # ep[-0]: ENV_FLAGS asm.mov([SP, C.VALUE.size * (ep_offset - 0)], frame_type) asm.comment('set up new frame') cfp_offset = -C.rb_control_frame_t.size # callee CFP # For ISEQ, JIT code will set it as needed. However, C func needs 0 there for svar frame detection. if iseq.nil? asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:pc)], 0) end asm.mov(:rax, iseq.to_i) asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:iseq)], :rax) if block_handler == :captured asm.mov(:rax, [:rcx]) # captured->self else self_index = ctx.sp_offset - (1 + argc) # blockarg has been popped asm.mov(:rax, [SP, C.VALUE.size * self_index]) end asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:self)], :rax) asm.lea(:rax, [SP, C.VALUE.size * ep_offset]) asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:ep)], :rax) asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:block_code)], 0) # Update SP register only for ISEQ calls. SP-relative operations should be done above this. sp_reg = iseq ? SP : :rax asm.lea(sp_reg, [SP, C.VALUE.size * sp_offset]) asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:sp)], sp_reg) # cfp->jit_return is used only for ISEQs if iseq # The callee might change locals through Kernel#binding and other means. ctx.clear_local_types # Stub cfp->jit_return return_ctx = ctx.dup return_ctx.stack_pop(argc + ((block_handler == :captured) ? 0 : 1)) # Pop args and receiver. blockarg has been popped return_ctx.stack_push(Type::Unknown) # push callee's return value return_ctx.sp_offset = 1 # SP is in the position after popping a receiver and arguments return_ctx.chain_depth = 0 branch_stub = BranchStub.new( iseq: jit.iseq, shape: Default, target0: BranchTarget.new(ctx: return_ctx, pc: jit.pc + jit.insn.len * C.VALUE.size), ) branch_stub.target0.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(return_ctx, ocb_asm, branch_stub, true) @ocb.write(ocb_asm) end branch_stub.compile = compile_jit_return(branch_stub, cfp_offset:) branch_stub.compile.call(asm) end asm.comment('switch to callee CFP') # Update CFP register only for ISEQ calls cfp_reg = iseq ? CFP : :rax asm.lea(cfp_reg, [CFP, cfp_offset]) asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], cfp_reg) end def compile_jit_return(branch_stub, cfp_offset:) # Proc escapes arguments in memory proc do |branch_asm| branch_asm.comment('set jit_return to callee CFP') branch_asm.stub(branch_stub) do case branch_stub.shape in Default branch_asm.mov(:rax, branch_stub.target0.address) branch_asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:jit_return)], :rax) end end end end # CALLER_SETUP_ARG: Return CantCompile if not supported # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def jit_caller_setup_arg(jit, ctx, asm, flags) if flags & C::VM_CALL_ARGS_SPLAT != 0 && flags & C::VM_CALL_KW_SPLAT != 0 asm.incr_counter(:send_args_splat_kw_splat) return CantCompile elsif flags & C::VM_CALL_ARGS_SPLAT != 0 # splat is not supported in this path asm.incr_counter(:send_args_splat) return CantCompile elsif flags & C::VM_CALL_KW_SPLAT != 0 asm.incr_counter(:send_args_kw_splat) return CantCompile elsif flags & C::VM_CALL_KWARG != 0 asm.incr_counter(:send_kwarg) return CantCompile end end # Pushes arguments from an array to the stack. Differs from push splat because # the array can have items left over. # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def move_rest_args_to_stack(array, num_args, jit, ctx, asm) side_exit = side_exit(jit, ctx) asm.comment('move_rest_args_to_stack') # array is :rax array_len_opnd = :rcx jit_array_len(asm, array, array_len_opnd) asm.comment('Side exit if length is less than required') asm.cmp(array_len_opnd, num_args) asm.jl(counted_exit(side_exit, :send_iseq_has_rest_and_splat_not_equal)) asm.comment('Push arguments from array') # Load the address of the embedded array # (struct RArray *)(obj)->as.ary array_reg = array # Conditionally load the address of the heap array # (struct RArray *)(obj)->as.heap.ptr flags_opnd = [array_reg, C.RBasic.offsetof(:flags)] asm.test(flags_opnd, C::RARRAY_EMBED_FLAG) heap_ptr_opnd = [array_reg, C.RArray.offsetof(:as, :heap, :ptr)] # Load the address of the embedded array # (struct RArray *)(obj)->as.ary ary_opnd = :rdx # NOTE: array :rax is used after move_rest_args_to_stack too asm.lea(:rcx, [array_reg, C.RArray.offsetof(:as, :ary)]) asm.mov(ary_opnd, heap_ptr_opnd) asm.cmovnz(ary_opnd, :rcx) num_args.times do |i| top = ctx.stack_push(Type::Unknown) asm.mov(:rcx, [ary_opnd, i * C.VALUE.size]) asm.mov(top, :rcx) end end # vm_caller_setup_arg_splat (+ CALLER_SETUP_ARG): # Pushes arguments from an array to the stack that are passed with a splat (i.e. *args). # It optimistically compiles to a static size that is the exact number of arguments needed for the function. # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def push_splat_args(required_args, jit, ctx, asm) side_exit = side_exit(jit, ctx) asm.comment('push_splat_args') array_opnd = ctx.stack_opnd(0) array_stack_opnd = StackOpnd[0] array_reg = :rax asm.mov(array_reg, array_opnd) guard_object_is_array(jit, ctx, asm, array_reg, :rcx, array_stack_opnd, :send_args_splat_not_array) array_len_opnd = :rcx jit_array_len(asm, array_reg, array_len_opnd) asm.comment('Side exit if length is not equal to remaining args') asm.cmp(array_len_opnd, required_args) asm.jne(counted_exit(side_exit, :send_args_splat_length_not_equal)) asm.comment('Check last argument is not ruby2keyword hash') ary_opnd = :rcx jit_array_ptr(asm, array_reg, ary_opnd) # clobbers array_reg last_array_value = :rax asm.mov(last_array_value, [ary_opnd, (required_args - 1) * C.VALUE.size]) ruby2_exit = counted_exit(side_exit, :send_args_splat_ruby2_hash); guard_object_is_not_ruby2_keyword_hash(asm, last_array_value, :rcx, ruby2_exit) # clobbers :rax asm.comment('Push arguments from array') array_opnd = ctx.stack_pop(1) if required_args > 0 # Load the address of the embedded array # (struct RArray *)(obj)->as.ary array_reg = :rax asm.mov(array_reg, array_opnd) # Conditionally load the address of the heap array # (struct RArray *)(obj)->as.heap.ptr flags_opnd = [array_reg, C.RBasic.offsetof(:flags)] asm.test(flags_opnd, C::RARRAY_EMBED_FLAG) heap_ptr_opnd = [array_reg, C.RArray.offsetof(:as, :heap, :ptr)] # Load the address of the embedded array # (struct RArray *)(obj)->as.ary asm.lea(:rcx, [array_reg, C.RArray.offsetof(:as, :ary)]) asm.mov(:rax, heap_ptr_opnd) asm.cmovnz(:rax, :rcx) ary_opnd = :rax (0...required_args).each do |i| top = ctx.stack_push(Type::Unknown) asm.mov(:rcx, [ary_opnd, i * C.VALUE.size]) asm.mov(top, :rcx) end asm.comment('end push_each') end end # Generate RARRAY_LEN. For array_opnd, use Opnd::Reg to reduce memory access, # and use Opnd::Mem to save registers. def jit_array_len(asm, array_reg, len_reg) asm.comment('get array length for embedded or heap') # Pull out the embed flag to check if it's an embedded array. asm.mov(len_reg, [array_reg, C.RBasic.offsetof(:flags)]) # Get the length of the array asm.and(len_reg, C::RARRAY_EMBED_LEN_MASK) asm.sar(len_reg, C::RARRAY_EMBED_LEN_SHIFT) # Conditionally move the length of the heap array asm.test([array_reg, C.RBasic.offsetof(:flags)], C::RARRAY_EMBED_FLAG) # Select the array length value asm.cmovz(len_reg, [array_reg, C.RArray.offsetof(:as, :heap, :len)]) end # Generate RARRAY_CONST_PTR (part of RARRAY_AREF) def jit_array_ptr(asm, array_reg, ary_opnd) # clobbers array_reg asm.comment('get array pointer for embedded or heap') flags_opnd = [array_reg, C.RBasic.offsetof(:flags)] asm.test(flags_opnd, C::RARRAY_EMBED_FLAG) # Load the address of the embedded array # (struct RArray *)(obj)->as.ary asm.mov(ary_opnd, [array_reg, C.RArray.offsetof(:as, :heap, :ptr)]) asm.lea(array_reg, [array_reg, C.RArray.offsetof(:as, :ary)]) # clobbers array_reg asm.cmovnz(ary_opnd, array_reg) end def assert(cond) assert_equal(cond, true) end def assert_equal(left, right) if left != right raise "'#{left.inspect}' was not '#{right.inspect}'" end end def fixnum?(obj) (C.to_value(obj) & C::RUBY_FIXNUM_FLAG) == C::RUBY_FIXNUM_FLAG end def flonum?(obj) (C.to_value(obj) & C::RUBY_FLONUM_MASK) == C::RUBY_FLONUM_FLAG end def symbol?(obj) static_symbol?(obj) || dynamic_symbol?(obj) end def static_symbol?(obj) (C.to_value(obj) & 0xff) == C::RUBY_SYMBOL_FLAG end def dynamic_symbol?(obj) return false if C::SPECIAL_CONST_P(obj) C.RB_TYPE_P(obj, C::RUBY_T_SYMBOL) end def shape_too_complex?(obj) C.rb_shape_get_shape_id(obj) == C::OBJ_TOO_COMPLEX_SHAPE_ID end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] # @param asm [RubyVM::RJIT::Assembler] def defer_compilation(jit, ctx, asm) # Make a stub to compile the current insn if ctx.chain_depth != 0 raise "double defer!" end ctx.chain_depth += 1 jit_direct_jump(jit.iseq, jit.pc, ctx, asm, comment: 'defer_compilation') end def jit_direct_jump(iseq, pc, ctx, asm, comment: 'jit_direct_jump') branch_stub = BranchStub.new( iseq:, shape: Default, target0: BranchTarget.new(ctx:, pc:), ) branch_stub.target0.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true) @ocb.write(ocb_asm) end branch_stub.compile = compile_jit_direct_jump(branch_stub, comment:) branch_stub.compile.call(asm) end def compile_jit_direct_jump(branch_stub, comment:) # Proc escapes arguments in memory proc do |branch_asm| branch_asm.comment(comment) branch_asm.stub(branch_stub) do case branch_stub.shape in Default branch_asm.jmp(branch_stub.target0.address) in Next0 # Just write the block without a jump end end end end # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] def side_exit(jit, ctx) # We use the latest ctx.sp_offset to generate a side exit to tolerate sp_offset changes by jit_save_sp. # However, we want to simulate an old stack_size when we take a side exit. We do that by adjusting the # sp_offset because gen_outlined_exit uses ctx.sp_offset to move SP. ctx = ctx.with_stack_size(jit.stack_size_for_pc) jit.side_exit_for_pc[ctx.sp_offset] ||= Assembler.new.then do |asm| @exit_compiler.compile_side_exit(jit.pc, ctx, asm) @ocb.write(asm) end end def counted_exit(side_exit, name) asm = Assembler.new asm.incr_counter(name) asm.jmp(side_exit) @ocb.write(asm) end def def_iseq_ptr(cme_def) C.rb_iseq_check(cme_def.body.iseq.iseqptr) end def to_value(obj) GC_REFS << obj C.to_value(obj) end def full_cfunc_return @full_cfunc_return ||= Assembler.new.then do |asm| @exit_compiler.compile_full_cfunc_return(asm) @ocb.write(asm) end end def c_method_tracing_currently_enabled? C.rb_rjit_global_events & (C::RUBY_EVENT_C_CALL | C::RUBY_EVENT_C_RETURN) != 0 end # Return a builtin function if a given iseq consists of only that builtin function def builtin_function(iseq) opt_invokebuiltin_delegate_leave = INSNS.values.find { |i| i.name == :opt_invokebuiltin_delegate_leave } leave = INSNS.values.find { |i| i.name == :leave } if iseq.body.iseq_size == opt_invokebuiltin_delegate_leave.len + leave.len && C.rb_vm_insn_decode(iseq.body.iseq_encoded[0]) == opt_invokebuiltin_delegate_leave.bin && C.rb_vm_insn_decode(iseq.body.iseq_encoded[opt_invokebuiltin_delegate_leave.len]) == leave.bin C.rb_builtin_function.new(iseq.body.iseq_encoded[1]) end end def build_calling(ci:, block_handler:) CallingInfo.new( argc: C.vm_ci_argc(ci), flags: C.vm_ci_flag(ci), kwarg: C.vm_ci_kwarg(ci), ci_addr: ci.to_i, send_shift: 0, block_handler:, ) end end end